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Hamilton’s principle of mechanics has special advantages as the beginning point for 
approximations. First, it is extremely succinct. Secondly, it easily accommodates 
moving disconnecting fluid boundaries. Thirdly, approximations - however strong - 
that  maintain the symmetries of the Hamiltonian will automatically preserve the 
corresponding conservation laws. For example, Hamilton’s principle allows useful 
analytical and numerical approximations to the equations governing the motion of 
a homogeneous rotating fluid with free boundaries. 

1. Introduction 
Hamilton’s principle of mechanics governs the motions of classical fluids. As a 

statement of dynamical law, it has important practical advantages over the more 
conventional Eulerian formulation of fluid mechanics. I n  this paper, I show how 
Hamilton’s principle permits useful analytical and numerical approximations to the 
equations governing the motion of a homogeneous fluid blob on an infinite rotating 
table (figure 1) .  The blob is horizontally unconstrained, and can subdivide into any 
number of ‘bloblets’. Salmon ( 1 9 8 2 ~ )  used a similar model system for a numerical 
study of the ocean’s main thermocline. In  this paper, the blob model serves merely 
to illustrate the special advantages of Hamiltonian methods, which generalize easily 
to more complicated cases. The methods described below are distinctly superior to 
those of the earlier paper. 

Hamilton’s principle has two primary advantages as the beginning point for 
approximations. First, i t  is extremely succinct. This means, for example, that, once 
the exact Hamiltonian has been replaced by a discrete numerical analogue, then the 
numerical analyst is relieved of all further opportunities to exercise his bias: the 
principle of least action dictates the evolution equations for the discrete dependent 
variables. Secondly, there exists a well-known connection between the symmetry 
properties of the Hamiltonian and the conservation laws of the dynamical system. 
Approximations - however strong - that  maintain the symmetries will automatically 
preserve analogues of the exact constants of the motion. 

Hamilton’s principle for perfect fluids can be stated in a great many dissimilar 
forms, which differ in the choice of both dependent and independent variables. The 
commonly encountered forms of Hamilton’s principle fall into two general categories. 
I n  the first category, which corresponds to  Hamilton’s principle in particle mechanics, 
the positions and momenta of marked fluid particles are varied a t  fixed times (Herivel 
1955; Eckart 1960). This is the form of Hamilton’s principle used in this paper. In  
the second category, appropriately chosen field variables are varied a t  fixed locations 
and times. The field variables typically include a set of scalar potentials which 
represent the fluid velocity (Clebsch 1859; Seliger & Whitham 1968). It has recently 
been shown that these two general forms of Hamilton’s principle are really the same : 
They are related by canonical transformations (Broer & Kobussen 1974; van Saarloos 
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FIGURE 1. The general fluid system considered in this paper. 

1981 ; Salmon 1982a; Griffa 1982). I believe that the particle form is usually the 
simplest, and that the others have been somewhat overemphasized. 

This paper is self-contained and requires only an elementary familiarity with 
Hamiltonian mechanics. Section 2 defines the blob model, with ‘shallow-water ’ 
dynamics, gives the equivalent form of Hamilton’s principle, and derives the 
important conservation laws. The numerical model of $ 3 is an energy-conserving 
analogue which easily accommodates blob splitting and reconnection. In  contrast 
with the awkward method of Salmon (1982a), the fluid particles need never be 
relabelled. However, because the model of $52 and 3 includes fast gravity waves, it  
is inefficient for the study of low-frequency motions. Section 4 therefore introduces 
an approximate Hamiltonian in which the momenta are replaced a priori by their 
geostrophic values. The resulting equations, which contain no gravity waves, 
resemble ‘balanced models ’ currently in use. However, these new equations conserve 
proper analogues of the total energy and the potential vorticity on fluid particles. 
Section 5 applies the numerical model of $3  to an example of current interest. 

Hamilton’s principle has not often been used as the basis for numerical models. 
The point vortex model of incompressible two-dimensional flow is a notable exception 
(see e.g. Aref & Pomphrey 1981). Buneman (1982) describes a two-dimensional model 
based upon the Clebsch formulation of Hamilton’s principle. His method will require 
particle relabelling (a gauge transformation of the Clebsch potentials) to maintain 
numerical accuracy as time increases. The best known numerical models for flows with 
free surfaces and arbitrary vorticity distributions are the marker- and particle-in-cell 
methods, which are not based upon a Hamiltonian (see e.g. Harlow & Welch 1965). 

2. Shallow-water model 
The equations governing a shallow rotating blob of inviscid homogeneous fluid are 

Du ah 
-- fv = -9-  
Dt ax’ 

Dv ah - +fu = - g - ,  
Dt aY 

(2.1 a) 

(2.1 b)  

ah a a 
- + -(uh)+ -((vh) =o, 
at ax aY 

(2.1 c) 
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where (x, y) are the horizontal Cartesian coordinates, (u,  v )  the corresponding 
horizontal velocities, t is the time, D/Dt = a/at + u a/ax + v a/ay, f = 252 is the Coriolis 
parameter, Q(z, y) is the spatially variable rotation rate, g is gravity, and h(z,  y, t )  
is the depth of the fluid (see figure 1 ) .  

Equations (2.1) are valid when the lengthscale L for horizontal variability is large 
compared with the fluid depth H ,  i.e. 

(;y 4 1. 

Then the pressure is hydrostatic and the horizontal velocity depth-independent. The 
same applies to flow in rapidly rotating coordinates under the weaker condition 

U H  =(J 4 1, 

where U is the scale for horizontal velocity. 
Before introducing the form of Hamilton’s principle corresponding to (2.1), it is 

appropriate to review basic particle mechanics. Consider therefore a classical system 
composed of N discrete particles. Let i be a subscript index which identifies the 
particle and let mi and xi(7) be the mass and the Cartesian position of the ith particle 
at time 7 .  Let V(x, ,  . . . , x,) be the potential energy of the system. The Lagrangian is 

N 
- V ( x l , . . . , x N ) ,  

and the dynamical equations result from Hamilton’s principle in the form 

6 j P m  Ld7 = 0, 
-m 

(2.4) 

where 6 corresponds to arbitrary variations 6xi(7) in the particle trajectories, and 
6xi( _+ 00)  = 0. Alternatively, one can define the conjugate momenta 

and invoke Hamilton’s principle in the ‘extended form’ 

where 

is the Hamiltonian and 6 now stands for arbitrary independent variations 6pi(7), 
8 4 7 )  in the momenta and positions of the particles. 

Now consider the blob. Suppose first that f = 0. Let the positions 

x = x(a,  b ,  7 ) ,  y = y(a, b,  7 )  (2.9) 

of marked fluid particles be considered as functions of curvilinear labelling coordinates 
(a,b) and the time 7.  The labelling coordinates remain constant following the 
columnar motion of the fluid particles, and they are analogous to the subscript i 
above. Note that 7 = t ,  but a/at  means that (5,  y) are held fixed, while a/87 means fixed 
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(a,  b).  Thus 8/87 = D/Dt. It is convenient to assign the labelling coordinates so that 
equal areas in (a ,  b)-space contain equal masses. Then 

d(mass) = da db = ph dx dy, 

(2.10) 

where p is the constant fluid density. Apply a/a7 to  (2.10). The result is (2.1 c). Thus 
mass conservation is implicit in the representation (2.9). 

The blob kinetic energy (omitting the contribution of the vertical velocity) is 

(2.11) 

where the integration runs over the entire area of the blob. The potential energy is 

V = $ J‘Sda db h. (2.12) 

In (2.12) and below, the symbol h should be considered an abbreviation for the 
right-hand side of (2.10). Let 

L = T - V ,  
and require 6 L d 7 = 0  5 
for arbitrary variations 6x(a, b,  7 ) ,  6y(a, b, 7 ) .  The methods of variational calculus yield 

= {IS d7dadb [ ----___ Pga@2’y)]6x. .(2.13) 
i372 2 a(a,b) 

The last step uses h = 0 at  blob boundaries. Since 6x is arbitrary, (2.13) implies that 

ah -77x9 a*x - - pgh - a@, Y) L Y) - - _  
a72 b) a@, Y) 

which is equivalent to ( 2 . 1 ~ )  whenf = 0. Similarly, of course, 

a2Y ah 
6y: 7 = - 9 - .  

a7 aY 
To derive the extended form of Hamilton’s principle for the blob, define 

where 6 denotes the functional derivative. The analogues of (2.7), (2.8) are 

H = -  dadb[u2+v2+gh]. 
2 ss 

Independent variations 6x, 6y, 6u, 6v(a, b , 7 )  now yield (2.14), (2.15) plus 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 
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Next suppose that f is a non-zero constant. The principle (2.16) still holds in the 
coordinate system fixed to the stars. An elementary transformation to rotating 
coordinates gives the Lagrangian 

ax ay 52% 
a7 2 

L = ssdadb[(u--S2y)G +(v+Qx)- - -x*x (2.19) 

The Q2 term in (2.19) induces centrifugal acceleration, which was neglected in (2.1).t 
If this term is dropped from (2.19), then the variational equations are just (2.1). 
Finally, for the case of non-constant rotation, the proper generalization of (2.19) is 

L = j f iadb[(u-H)G ax 

where R(x, y) and P(x, y) are any two functions satisfying 

aR ap 
- + - = f(x, y). 
ay ax 

(2.20) 

(2.21) 

The Lagrangian (2.20) is precisely equivalent to the dynamics (2.1) for general f(x, y). 
The conservation laws for (2.1) can be deduced from the symmetry properties of 

(2.20). This procedure will seem roundabout, but the reader should reserve his 
judgement until $4. The conservation of energy corresponds to the symmetry pro- 
perty that R, P and g contain no explicit time dependence. Let 

7’ = 7+67(7) ,  6r+O, 67(+00)  = 0 (2.22) 

be a new time coordinate and let the dependence of x, y, u, v on 7 in one realization 
of the motion be the same as the dependence on r’ in a second realization. The two 
realizations differ only in the time values assigned to corresponding events. The action 
difference between the two realizations is 

which must be zero by Hamilton’s principle. Thus 

- = 0. 
dH 
a7 

(2.23) 

(2.24) 

t More precisely, the centrifugal accelerations were considered to be a part of the gravity, which 
was still treated as locally Cartesian. 
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Potential-vorticity conservation corresponds to the symmetry property that the 
labelling coordinates (a ,  b)  enter (2.20) only through the Jacobian (2.10). Let 

I a’ = a+ &(a, b, 7 ) ,  

bf = b + 6b(a, b,  7) 
(2.25) 

be new labelling coordinates with the same value of (2.10). Now, 6 corresponds to 
changes in the values of the particle labels only. That is, the two realizations differ 
only in the label values assigned to corresponding particles. By assumption, 

implies that 

(2.26) 

(2.27) 

for some 6$(a, b, 7). The change in action is 

6 L d 7 =  d7 dadb (2.28) s ISS I 
where 

(2.29) 

(2.30) 

ax Thus 

ax 
+6bba., (u-R)- +(v+P)-  ” [  ab 

(2.31) 

(2.32) 

and the potential vorticity is conserved on particles. This derivation has been given 
in a more general form by Ripa (1981) and Salmon (1982 b). 

Although energy and potential vorticity Seem to be the most important invariants, 
there may of course be others. Momentum and angular-momentum conservation 
correspond to translational and rotational invariance of the whole system. Solid 
boundaries (and other external potentials) affect the conservation of momentum but 
not the potential vorticity, because the latter depends only on particle-label 
variations. 
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3. Numerical analogue 
Suppose that the continuous blob is replaced by a collection of N discrete particles, 

each with mass m. Let x( be the (x, y)-location of the ith particle. According to (2.10) 
ths fluid depth is proportional to the mass per unit area. This motivates the 

replacement m 

P 
h(x)  = -n(x), (3.1) 

where 

= ~ ~ ( l x i - x l )  (3.2) 
i 

is a smooth estimator of the number of particles per unit area. The ‘sampling 
function’ S(r)  is a bell-shaped function of radius ro centred on r = 0. Since 

N = J J dxn(x), 

2 a r r S ( r ) d r  = 1. 
the function S(r)  must satisfy 

The specific choice 

S(r)  = 

(3.5) 
satisfies (3.3) and 

s’(0) = 8 ’ ( ro )  = S(ro) = 0. 

The parameter ro controls spatial resolution. If ro is too large, then the resolving power 
of (3.2) is poor. However, if ro is too small for the number of particles present, then 
the estimator n(x) has ‘lumps’ at the locations of the particles. The calculation is 
insensitive to the precise form of S(r)  provided that the particle concentration is 
sufficiently great. 

Now replace the Lagrangian (2.20) by the discrete analogue, 

where (ui, wi) is the velocity of the ith particle and 

Ri = R(xi) ,  8 = P(x( ) .  (3.7) 

The numerical dynamics come from Hamilton’s principle in the form 

6 Ldr  = 0 ,  

where L is given by (3.6) and 6 now corresponds to arbitrary independent variations 
6zi(7), 6yg(7), 6ui(7), 6w2(7). The variational equations are 

I 

6ut: x i  = ui, ( 3 . 8 ~ )  

6w,: yi = W(, (3.8b) 
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( 3 . 8 ~ )  

(3.8 d )  

where fi = f (Xi9  Yi) .  

Equations (3.8) are a coupled set of ordinary differential equations in the variables 
{xi, yI, ui, vi>. They can easily be solved by standard numerical methods. The 
analogues of (2.1 a ,  b )  are (3.8c, d) .  As in the continuous case, the conservation of mass 
(2.1 c) is implicit in the particle representation. The dynamics (3.8) automatically 
conserve the discrete energy 

(3.9) 

The sampling function S(r )  enters (3.8), (3.9) as the potential for a repulsive force 
between particles. This potential is finite for zero particle separation and zero for 
separations greater than ro. Thus the right-hand sides of (3.8), (3.9) demand only O ( N )  
computations, which is the same as for standard gridpoint methods. However, unlike 
gridpoint methods, (3.8) easily accommodates moving and disconnecting blob 
boundaries. The boundary particles have no special status in (3.8). 

From the standpoint of oceanographic applications (3.8) have two shortcomings. 
First, there is apparently no discrete analogue of the potential-vorticity conservation 
on particles. I will return to this point in $6. Secondly, and more important, the 
dynamics (3.8) correctly include gravity waves. These waves, which all have 
frequencies greater than f,  are a great hindrance to the efficient numerical study of 
low-frequency motion, because the gravity waves require a very short time step for 
numerical stability. Section 4 offers a low-frequency approximation to (3.6) which 
filters out the gravity waves but retains the other advantages of (3.8). 

4. Geostrophic model 
Suppose that the velocity variables (u,v) are simply dropped from (2.20). The 

resulting Lagrangian, 

depends only on the particle locations x(a, b, 7 ) .  Variations in the particle locations 

( 4 . 2 ~ )  
yield a Y  ah 6x: -f-=-g- 

a7 ax 
ax ah 

6y: +f-=-g-, 
ar aY 

(4.2 b )  

which are the equations of geostrophic balance. Since mass conservation is still 
implicit, these dynamics are equivalent to the following set of Eulerian equations: 

ah 
+fu = -9- ax’ aY ’ 

ah -fv = - 9 -  (4.3a, b )  

ah a a 
at ax aY 
- + - (uh) + - (vh) = 0 (4.3c) 
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for the dependent variables u, w and h(x,  y, t). The set (4.3) is a logical approximation 
to low-Rossby-number flow ( U / Q L  + 1). However, the complete neglect of inertia is 
probably too severe. If, for example, f is constant, then the Eulerian motion described 
by (4.3) is steady, and the particles follow periodic orbits. 

Suppose therefore that (u,w) are not dropped, but replaced a priori by their 
geostrophic values. The resulting Lagrangian 

(4.4) 
Ll = j j d a d b [ ( u G - R ) s  ax +(wG+f')- ay -$(ub+w&+gh) 

aT 
with 

(4.5) 

still depends only on the particle locations, because the geostrophic velocities are 
determined by the mass distribution. Variations in the particle locations now yield 

h -UG + u G * v u G  + U G ' v U A G  + u ~ G * v u G ]  + fk  x h ( U G  + U A G )  + gV(+h2) 
E t  

= -gv(hpk . v  X ( Y ) ) - g v ( & h 2 ) [ U A G  x v( i ) ]*k,  (4.6) 

where the ageostrophic velocity 
ax 
a7 UAG (4.7) 

is the difference between the 'true velocity' ax/&r of massive particles, and the 
geostrophic velocity uG. From the Lagrangian viewpoint, (4.6) is a first-order 
equation in time for the particle locations x(a, b, 7 ) .  The symbols uG and uAG are merely 
abbreviations for (4.5) and (4.7). From the Eulerian point of view, (4.5), (4.6) and 
the continuity equation 

- - UG 

ah 
- + v ' [ ( u ~ + u ~ ~ ) h ]  = 0 (4.8) at 

are five equations in the five dependent variables uG, uAG, and h(x, y, t). There is no 
explicit equation for the time evolution of uAG, but an equation determining uAG from 
h could be obtained by time differentiation of (4.5) and the use of (4.6) and (4.8). The 
Lagrangian viewpoint is much simpler, and is the form preferred for numerical study. 
However, the Eulerian form (4.6) reveals some of the physical content of (4.4). The 
left side of (4.6) contains the exact Coriolis and pressure-gradient terms, plus an 
approximation a 

-uG + uG'VUG + uG*VUAG + uAG'VUG 
at (4.9) 

to the exact relative acceleration 

(4.10) - ( ~ G + U A G ) -  

The approximation (4.9) differs from (4.10) in the neglect of the local rate of change 
in the ageostrophic velocity, a u A G / a t  and in the neglect of U A G ' V U A G .  Both terms 
are small in low-Rossby-number flow. The neglect of a u A G / a t  filters out the gravity 
waves. The right-hand side of (4.6) has no obvious interpretation, but is no larger 
than the smallest terms on the left, provided that the scale for f variation is no smaller 
than L. For constant f ,  the right-hand side of (4.6) reduces to 

a 
a7 

(4.11) 
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where & is the ageostrophic relative vorticity. The expression (4.11) can be 
considered as a tiny error in the pressure gradient. 

The conservation laws for (4.6) follow directly from the symmetry properties of 
(4.4). The dynamics (4.4) or (4.6) conserves the 'geostrophic energy', 

and a geostrophic approximation to the potential vorticity on particles, 

(4.12) 

(4.13) 

These laws are easily proved using the same methods as in $2. Again, the potential- 
vorticity law (4.13) results from variations in the particle labels which leave the 
Jacobian (2.10) unchanged. These conservation laws can of course also be proved 
directly from (4.6), but the algebra is surprisingly tedious. More important, the 
appearance of (4.6) gives no hint that conservation laws even exist, whereas the 
obvious symmetry properties of (4.4) guarantee a priori that analogues of the energy 
and potential vorticity will be conserved. From the Eulerian viewpoint, the peculiar 
terms on the right-hand side of (4.6) are, miraculously, just those required to get (4.12) 
and (4.13). From the Lagrangian viewpoint (4.12), (4.13) are secure from the 
beginning. In a sense, (4.12), (4.13) are more important than the appearance of (4.6), 
because the existence of conservation laws and symmetry properties is independent 
of the choice of coordinates. That the approximation (4.4) leads to complicated 
Eulerian equations is not a deficiency in the approximation itself, but rather in the 
choice of an Eulerian representation. 

The discrete analogue of (4.4) is 

where 

m 

P I  
hi = h(xJ = -zs(lx(-xjl) 

as before. The discrete dynamics 

(4.15) 

(4.16) 

(4 .17~)  

result from the requirement that S(4.14) dr be stationary with respect to 6xd(r) for 
all i .  Unlike (3.8), the equations (4.17) for k, involve the velocities ii(j + i) of nearby 
fluid particles. This is a characteristic property of filtered models. For Rossby 
numbers of 0.01 and less (based on the lengthscale ro and the r.m.s. particle velocity) 
I have found that (4.17) can efficiently be solved for the k, by iterative adjustment 
of the left-hand sides. For higher Rossby numbers, other methods will have to be used. 
A sequel paper will report the application of a two-layer version of (4.17) to a model 
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Experiment r,, Ns N CPU time per step 

I 1.6h 80 792 3.8 s 
I1 0.8h 65 2499 15.8 s 

TABLE 1 

of the ocean’s main thermocline. Section 5 describes some solutions of the numerical 
equations of Q 3. 

5. Numerical example 
Griffiths, Killworth & Stern (1982) recently described a new type of parallel-flow 

instability for the same fluid system considered in this paper. They suppose that the 
initial blob is a narrow ribbon of fluid in near-geostrophic balance. If the ribbon width 
W is comparable to the Rossby deformation radius, 

(where H is the maximum fluid depth), then the ribbon develops varicose meanders. 
The meanders grow and the ribbon eventually breaks up into a chain of closed 
anticyclonic eddies. If the initial potential vorticity is uniform, then linear theory 
predicts that the meander wavelength for fastest growth is slightly larger than 2nA 
and relatively insensitive to  W for all W 5 2A. Laboratory experiments confirm these 
predictions. 

In  this section I describe two numerical experiments using the same assumptions 
and parameter settings as Griffiths et al. The initial blob is an annulus with width 
2A and radius 10A (see table 1). The two experiments differ in the sampling radius 
r,, and in the number of particles N ,  in a sampling area 7crE at time zero. These two 
factors determine N ,  the total number of particles. 

The equations (3.8) were centre-stepped on a minicomputer. A time step of 0.01 
rotation periods (0.01 RP) conserved the energy (3.9) to within one per cent over 1000 
steps. The results (figures 2 and 3) closely resemble the laboratory photos of Griffiths 
et al. (1982). Both the experiments shown begin from the state of rest and reach 
geostrophic equilibrium within 2 RP. After 3 4  RP, meanders appear with the 
wavelength predicted by Griffiths et al. The meanders evolve into nearly isolated 
lumps within 6-9 RP. Experiment I1 has twice the resolution r;l and about three 
times as many fluid particles as has experiment I. In experiment 11, however, the 
number of fluid particles per sampling area is slightly less than in experiment I. The 
end states are qualitatively similar, but I1 evolves somewhat more slowly than I. 

The depth estimator (3.1) forces the particle concentration to vanish a t  the blob 
boundaries, where the depth is zero. In consequence, the zero contours in figures 2 
and 3 are poorly determined in a statistical sense. I believe that this is the most serious 
defect in the method as currently proposed. One remedy would allow particles near 
the blob edge to fission into more particles with smaller individual masses such 
that total mass, energy, etc. are conserved. Unfortunately, this idea involves ad hoc 
programming decisions. The experiments described here are preliminary, and mainly 
illustrate the practicality of the methods proposed. 
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(4 
U 

( C )  

FIGURE 2. The fluid annulus in experiment 1 after (a )  0, ( b )  2.0, (c) 3.6 and (d) 6.4 rotation periods. 
Darker contours correspond to greater fluid depth. The circles at lower left have radius r,. 

V 
(0)  (b ) 

0 

FIGURE 3. The same as figure 2 for experiment I1 after ( a )  6.4 and (b )  9.5 rotation periods. 
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6.  Discussion 
The methods of this paper generalize easily to continuously stratified and multi- 

layered flows. Non-conservative forcing and damping can be included, but they must 
be inserted into the equations after the variational principle has been invoked. This 
is not a major defect in the method, because the non-conservative force laws are 
usually much simpler than pressure or inertia. Solid boundaries present no special 
difficulties, because the boundaries correspond to infinite potential walls. Since these 
potentials depend only on particle locations, they do not disturb the time and 
particle-label symmetries. Hence the conservation laws remain intact. 

As previously remarked, the numerical equations of $53 and 4 do not conserve 
analogues of the potential vorticity on particles, because the discretization destroys 
the symmetry property corresponding to infinitesimal variations in the particle labels. 
The conservation law would be preserved i fa  potential vorticity were assigned to each 
particle a priori, in the same way as mass. However, such assignment uses a 
consequence of the variational principle (potential-vorticity conservation) to modify 
the variational principle itself. This is legal only if the subsequently allowed 
variations conserve potential vorticity. One way to assure compliance would be to 
express the rotational velocity as a functional of the particle locations and the given 
(invariant) potential vorticity on particles. The irrotational velocity, which does not 
contribute to potential vorticity, would still be freely varied. Unfortunately, this 
procedure seems too complicated to be practical. Perham there is a simpler wav. 

The geostrophic model (4.4) was not - but could have been - obtained as the second 
step in a systematic iterative procedure. In  this paper, specific methods and results 
are secondary to the general theme that conservation laws are important and are 
automatically maintained if the approximations bear on the Hamiltonian itself. 
Nonetheless, (4.4) is a significant result. McWilliams & Gent (1980) have recently 
reviewed and extended the general class of low-Rossby-number model equations 
which are intermediate in accuracy between the quasigeostrophic and primitive 
equations. However, none of the models discussed by McWilliams & Gent conserve 
analogues of both energy and potential vorticity in the general case of non-constant 
Coriolis parameter. 

This work was supported by the National Science Foundation (OCE-8117696). I 
gratefully acknowledge numerous helpful discussions with Annalisa Griffa. 
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