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The equations for gravity waves on the free surface of a laterally unbounded inviscid 
fluid of uniform density and variable depth under the action of an external pressure 
are derived through Hamilton’s principle on the assumption that the fluid moves in 
vertical columns. The resulting equations are equivalent to those of Green & Naghdi 
(1976). The conservation laws for energy, momentum and potential vorticity are 
inferred directly from symmetries of the Lagrangian. The potential vorticity vanishes 
in any flow that originates from rest ; this leads to a canonical formulation in which 
the evolution equations are equivalent, for uniform depth, to Whitham’s (1967) 
generalization of the Boussinesq equations, in which dispersion, but not nonlinearity, 
is assumed to be weak. The further approximation that nonlinearity and dispersion 
are comparably weak leads to a canonical form of Boussinesq’s equations that 
conserves consistent approximations to energy, momentum (for a level bottom) and 
potential vorticity. 

1. Introduction 
We consider here the equations that govern gravity waves on the free surface of 

a laterally unbounded inviscid fluid of uniform density p, ambient depth H and 
superficial pressure p,, starting from the single assumption (beyond those of an ideal 
liquid and Newtonian mechanics) that the fluid moves in vertical columns. This 
assumption is equivalent to that made by Green & Naghdi (1976, and references cited 
therein) for the same model and implies the restriction 

€ = (d/Z)% -4 1, (1.1) 

where d is a depthscale and 1 is a horizontal lengthscale. This, in turn, implies that 
dispersion is weak. Our preliminary formulation ($82 and 3) is for variable depth, but 
we impose the provisional restriction of uniform depth in $ 8 4 4  and defer the results 
for variable depth to Appendix C. 

Our primary aims are: (i) to derive the Green-Naghdi (GN) equations (see below) 
and their invariants directly from Hamilton’s principle (Green & Naghdi derive them 
from conservation of energy and invariance under rigid-body translation) ; (ii) to 
establish the relation between these equations and those of Boussinesq, of which there 
are several forms and in which the restriction (1 . l) typically is accompanied by the 
restriction that nonlinearity be comparably weak; (iii) to explore the role of vorticity 
in the GN and Boussinesq equations. A major advantage of the derivation of the 
equations of motion from Hamilton’s principle is that consistent approximations to 
energy (including the work done by the external pressure), impulse-momentum (for 
a level bottom) and potential vorticity are conserved if approximations that preserve 
the original symmetries are introduced in the action integral and no further 
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approximations are introduced subsequent to the variation of the action (for a more 
extensive discussion see Salmon 1983).t 

We begin with a Lagrangian description of the fluid motion, which leads to the 
representation of the kinetic and potential energies of the fluid qua continuum of 
particles on which work is done by the external pressure (surface tension could be 
included through the appropriate addition to the potential energy but is omitted in 
the interests of simplicity). We then invoke Hamilton’s principle for this system to 
obtain the equation of motion 

~ U + A  = -v(p+gq) (9 = a,+u-v), (1.2) 

where u is the horizontal velocity of a particle, 9 u  is the corresponding acceleration, 
A is an auxiliary acceleration that is given by 

A = +h-l V(h2 g2q) (H = constant) (1.3) 

for uniform depth and by (C2) for variable depth, P = p , / p  is a reduced pressure, 
q is the free-surface displacement, and h = q + H  (the depth beneath the displaced 
surface, but we use depth without a modifier to designate the ambient depth H). The 
corresponding approximation to the equation of continuity is 

9 h + h V * u  = 0. (1 -4) 

We designate (1.2) and (1.4) as the GN equations ; (1.4) is equivalent to (4.27) in Green 
& Naghdi’s 1976 paper; (1.2) can be derived from their (4.28)-(4.30) and is given 
explicitly by Ertekin (1984). 

The acceleration A is O(s) relative to 9 u  in (1.2), and its neglect reduces the GN 
equations to the Airy equations of nonlinear shallow-water theory (Wehausen & 
Laitone 1960). (But we note that, owing to the presence of g2q in A, the GN 
equations, in contrast with the Airy equations, do not provide explicit representations 
of ut and qt in terms of u and q and their spatial derivatives.) 

It may be inferred from (1.2) and (1.4) that the vorticity 6 = k*V x u, although 
initially zero in a flow originating from rest, does not remain so; accordingly, a 
conventional velocity potential for u does not exist.$ We fkd, however, that the 
potential vorticity 

is conserved by particles, where 6, is a pseudovorticity that is derived from A and 
is given by (5.5) for uniform depth and by (C3) for variable depth. It follows that 
if I7 = 0 initially it remains so, and u then admits a representation of the form 
u = Vq5+xV$ (see below), in which x and $ may be expressed in terms of 7 and H; 
however, q5, x and $ are not uniquely determined (even up to additive functions 
oft)  by this argument. 

We determine q5 (within an additive function oft) through an Eulerian formulation 
of Hamilton’s principle, in which q5 appears as the Lagrange multiplier of the 
continuity constraint (1.4) in the variational integrand and the resulting potential 

t The inference of integral invariants from symmetries in a variational integral goes beck to 
Noether (1918) and has been prominent, in the present context, in the work of Whitham (1967, 
1974). See also Benjamin & Olver (1982). 

$ Green & Neghdi (1976) and Ertekin (1984) overlook this fact and suggest that the constraint 
c = 0 could be imposed a priori (presumably by virtue of c = 0 at t = 0) and hence that u could 
be derived from a velocity potential ; however, they do not pursue this suggestion. 
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vorticity is zero. We achieve a further simplification by invoking the approximation 
(which is consistent with the basic approximation of columnar motion) that c* and 
u-V$ are O(E)  relative to c and u, respectively, which leads to the representation 

u = V$ +$hh-’ V(ha V2$) + O(e2) (H = constant) (1.6) 

for the special case of uniform depth and to (C5) for variable depth. The variables 
q5 and h then are canonical in Hamilton’s sense, and Hamilton’s principle implies a 
pair of evolution equations that are equivalent (for H = constant and P = 0) to a 
generalization of Boussinesq’s equations derived by Whitham (1967) from the 
three-dimensional equations of motion through a variational formulation in which (as 
in the present development) dispersion, but not nonlinearity, is assumed to be weak, 
q5 appears as the velocity potential at the free surface, and u is the depth-averaged 
horizontal velocity. 

The further approximation that nonlinearity is of the same order as dispersion - i.e. 
that 

where d and B are defined as in (l.l),  leads to the evolution equations 

qt + v (hV$) + +EIsv4q5 = 0 (1.8a) 

and $t+t(v$)a+gT#l+P = 0 (1.8b) 

in the special case of uniform depth and to (C10) for variable depth. We refer to 
(1.8a,b), which are derived from a Hamiltonian formulation in which q5 and h are 
canonical variables and which conserve energy and momentum, as the canonical form 
of Boussinesq’s equations. In their present form, they appear to be due to  Whitham 
(1967, equation (12)), although equivalent forms have been given by Lin & Clark 
(1959), Long (1964), Mei & Le M6haut6 (1966) and Peregrine (1967).t The corres- 
ponding approximation to (1.6) is 

u = V($ ++HZV2q5), (1.9) 

by virtue of which the conventional vorticity 6 vanishes in this approximation (but 
this does not hold for non-uniform depth; see Appendix C). 

We conclude that the GN equations are reducible, for flows originating from rest 
and after approximations that are consistent with the basic assumption of columnar 
motion, to  a generalization of the Boussinesq equations that exactly conserves 
consistent approximations to all of the invariants of the original equations. 

There remains the question of whether either the GN equations or Whitham’s and 
the present generalizations of the Boussinesq equations, in which dispersion is 
assumed to be weak but full nonlinearity is accommodated (in particular, the 
boundary conditions at the bottom and free surface are satisfied exactly), are superior 
(in some definite sense) to the canonical form of the Boussinesq equations, in which 
dispersion and nonlinearity are assumed to be comparably weak. The balance 
between dispersion and nonlinearity is intrinsic for the solitary wave, so that the GN 
and canonical Boussinesq equations should be of comparable validity in the description 
of such waves and their interactions. The GN description of the solitary wave is 
identical with that of Rayleigh (1876), the shape of which appears to be inferior to 
that of Boussinesq (1871) in comparisons with both experiment and more accurate 

t The canonical character of (1.8) is emphasized by Miles (1977) and Benjamin (1984). 
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theoretical calculations for amplitude/depth < 0.5 (Yamda 1958; Miles 1976); on 
the other hand, it appears that Rayleigh’s approximation to the speed of a solitary 
waves is superior to that of Boussinesq for sufficiently large amplitudes. Ertekin, 
Webster & Wehausen (1984) compare numerical predictions based on the GN 
equations and Wu’s (1981) formulation of the Boussinesq equations and conclude that 
‘the Green-Naghdi equations continue to give reasonable-appearing results when 
Wu’s equations have clearly begun to lose validity’. 

2. Kinematics 
We consider the motion of an incompressible, inviscid fluid of uniform density p 

bounded below by the rigid surface z = - H ( x )  and above by the free surface 
2 = q(x,  t ) ,  where x = (2, y) and z are the Cartesian coordinates of a fluid particle, z 
is positive up, and 7 = 0 in the equilibrium cohfiguration of a level free surface under 
the action of gravity. We assume that the fluid is in this equilibrium configuration 
at t = 0, choose the corresponding positions of the fluid particles as Lagrangian 
coordinates, x, = (xo, yo) and zo, and pose the description of the fluid motion in the 
form 

The assumptions of incompressibility and uniform density then imply 

a(x, y, 2) 

acx,, Yo, 20)  = 

The hypothesis that the fluid motion is columnar, 

x = X(XO,T), 
reduces the Jacobian (2.2) to 

(2.1 a, b,  c) 

Integrating (2.4) with respect to zo and imposing the condition z =  - H ( x )  at 
z,, = -H(xoj, i.e. that fluid particles initially on the lower boundary must remain 
there. we obtain 

z + H = -  yo) (zo + Ho) ,  
Y) 

where, here and subsequently, 

H = H ( x ) ,  Ho = H(xo). 

Invoking the free-surface condition z = T,I at zo = 0 in (2.5), introducing 

(2.6a, b)  

for the instantaneous depth, and eliminating the Jacobian between (2.5) and (2.7), 
we obtain 

(2.8a, b )  

The horizontal and vertical components of the particle velocity are given by 
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where (using subscripts to signify variables fixed during partial differentiation) 

(2.10 a,  b) 
ax ay 

Differentiating (2.7) with respect to 7 ,  

(2 .11~)  

and invoking (2.9) and (2.10), we obtain the equation of continuity in the Eulerian 
form (1.4). 

The vorticity is given by - 

) 
aw aw av au 

(ay ax ax ay Q)=Vx(u ,v ,w)=  -,--,--- , (2.12) 

Its horizontal components are z-dependent in consequence of (2.9b); its vertical 
component is z-independent . 

3. The Lagrangian density 
We proceed to calculate the kinetic and potential energies of the fluid, regarded 

&s a set of particles with the Lagrangian labels (z,, yo, 2,). In  transforming from 
Lagrangian to Eulerian coordinates, we make frequent use of the identities (2.2) and 
(2.8 a), which imply 

(3.1) 

for the primitive element of volume and 

hdxdy = H,dx,dy, dV (3.2) 

dx dy dz = dx, dy, dz, 

for the cblumnar element of volume. The (5, y)- and (xo, yo)-integrals are (in the 
absence of lateral boundaries) over the infinite plane. 

The kinetic energy is given by 

T =  +ssdxdys IH (u2+w2)dz 

= &I JJ dx, dy, So [*I + (i + h $y] dz, 
-Ho 

( 3 . 3 ~ )  

(3.3b) 

(3.3c) 

The potential energy, referred to the equilibrium configuration (z  = z,), is given by 

= pgssdx,dy,r  -Ha [ v + ( h - H  O )&]dz, Ho 

( 3 . 4 ~ )  

(3.4b) 

(v-H+H,)dV. ss (3.4c) 
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The work done by the external pressure p,(x, t) acting on the free surface is 

W = -  pedV. ss (3.5) 

Combining the preceding results, we obtain the Lagrangian density in the form 

(3.6a) 

(3.6b) 

I d  
L = - - (T- u+ W )  

PdV 
= + [ 1 5 2 + f ( r / 2 - H T j  + @) -g(?#7- H + H , ) ]  - P 
= +[u2 + +(hV.u)' + (u'VH) (hV*u) + (u* VH)' - g(h - 2H + H,)]  - P, ( 3 . 6 ~ )  

where the Eulerian form ( 3 . 6 ~ )  follows from (3.6b) through the substitutions 
15 = u,q = h - H , h  = -hV*u, and H = 9 H  = u-VH from (2.9)-(2.11), and 

P PeIP (3.7) 

is a reduced pressure that has the dimensions of specific energy. 

4. Hamilton's principle: particle formulation 

(Hamilton's principle), 
We now establish the equation of motion through the principle of least action 

where the conventions for variations of the path integral (including integration by 
parts) are those of classical dynamics (Goldstein 1980). 

The analytical manipulations for the general case of non-uniform depth are rather 
involved; accordingly, we consider the special case of uniform depth here and in $85 
and 6 and then state the corresponding results for variable depth in Appendix C. 

The Lagrangian density (3.6b) reduces, for H = H ,  and = 0, to 

L = i(k'+W"gq)-P, (4.2) 

the substitution of which into (4.1) yields 

6s = - 111 [%-6x + ($ + %) 6q + VP*6x] d Vd7. (4-3) 

Invoking the identity (Appendix A) 

substituting x = 9 u  and f = 9'7, and introducing 

A = fh-lV(h'9'?#7), 

!%+A = -V(P+gq) .  

we obtain the Eulerian equation of motion in the form 

(4.5) 

5. Conservation laws 
There is a well-known connection between the symmetry properties of a Lagrangian 

and the conservation laws of the corresponding dynamical system. The GN equations 
(1.2) and (1.4) conserve analogues of the total energy, momentum and the potential 
vorticity on particles because the approximate Lagrangian density (3.6) retains the 
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corresponding symmetry properties of the exact Lagrangian density for three- 
dimensional flow. 

If P = 0 conservation of energy, 
d 
-(T+ V) = 0, 
dt 

and momentum, 

i [ [udV dt = 0, 

correspond (as usual) to the symmetry properties that the Lagrangian density (3.6) 
is invariant to arbitrary translations of the whole system in time and in space. 
Confirmation of (5.1) and (5.2) follows from (1.2) and (1.4). If P # 0 it is necessary 
only to subtract W (3.5) from T+ I'in (5.1) and add JIPVhdxdy to the right-hand 
side of (5.2). 

We define the potential vorticity 

(5.3) 
l I E -  5+ g* 

h '  

where 

is the vertical component of the conventional vorticity , 

(5.4) 

(for uniform depth), and J is an alternative abbreviation for the Jacobian operator 
in (x, y). The conservation of potential vorticity, 

9lI = 0, (5.6) 

then corresponds to the symmetry property that the labels (x,,y,) enter the 
Lagrangian density (4.2) only through the Jacobian a(xo, y,)/a(x, y) ; see Salmon 
(1983) for details. 

We verify (5.6) by applying the operator k*V x to (4.6) and invoking (1.4) and 
(5.4) to obtain 

(5.7) 

Substituting A from (4.5) and multiplying by h-l, we obtain 

hB(h-'[)+k*V x A = 0. 

where 5, is given by (5.5); (6.6) then follows from (5.3) and (5.7). 
The pseudovorticity c,,, may be recast in the alternative forms 

y,,, = &-l J(h-n, hn+' 9 h )  

= +n-l k*V x [h-n V(hn+l g h ) ]  
= 4k.V x [ ( g h )  Vh] ,  

(5.8a) 

(5.8b) 

( 5 . 8 ~ )  

( 5 . 9 ~ )  
(5.9b) 
(5.9c) 
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where n is an arbitrary (but non-zero) parameter; ( 5 . 9 ~ )  reduces to (5.5) for n = - 1. 
It follows from (5.6) that if 5+6* is initially zero it remains so, by virtue of which 
there exist potentials #* such that u has the one-parameter family of representations 

u = V$" - +-' h-" V (  ha+' 9 h )  

= V @ - $ ( 9 h )  Vh,  

(5.10a) 

(5.10 b)  

where Q, is a master potential, and 

#n = @ +$n-'hgh. (5.11) 

The potential vorticity Z7 is closely related to Ertel's (1942) invariant for general 
three-dimensional flow ; see Appendix B. 

6. Zero-potential-vorticity flow 
The principle of least action may be invoked in an Eulerian reference frame by 

appending the constraint of continuity and, in the most general case, a Lin constraint 
(Lin 1963; Seliger & Whitham 1968). The connection between this 'Eulerian' form 
of Hamilton's principle and the 'particle-mechanics' form used in $4 has been 
discussed by various authors (see e.g. Bretherton 1970 ; van Saarloos 1981). We simply 
assert that the equations obtained by requiring that 

6 sss [hL +h(Bh + hV*u) + a9/3] dzdy dt = 0 (6.1) 

for arbitrary independent variations 6u, 6h, 6h, &a, 6 s  at fixed (2, y, t )  are precisely 
equivalent to the GN equations; here L is the Lagrangian density (3.6)' and h and 
a are the Lagrange multipliers of the continuity equation (1.4) and the Lin constraint 
9/3 = 0. If the equation 

6a: 9/j'= 0 (6.2) 

is used to eliminate /3 from (6.1)' then the simplified principle 

6 J s s [ h L  + A(% + hV u) ]  dz dy dt = 0 (6.3) 

for variations 6u, 6h, 6h yields equations whose solutions also satisfy the GN 
equations, but always imply 17 = 0. 

Considering again the case of uniform depth, for which ( 3 . 6 ~ )  reduces to 

L = ;[u2 + i ( h V . ~ ) ' - g ( h  - H ) ]  - P, (6.4) 

and integrating the constraint term in (6.3) by parts, we obtain 

6 sss h[h, + u . V h - + ~ ~ - ~ ( h V . u ) ~ + & ( h - H )  + PI dxdy dt = 0. (6.5) 

The variation with respect to A, which is obtained more directly from (6.3), yields 
(1.4). The variations with respect to u and h yield 

u = Vh+ihh-lV(h3V*u), (6.6) 

(6-7 1 

for which 17 = 0 for any choice of A, and 

+ u V h  - $2 - !j( hV * u ) ~  + g( h - !jH) + P = 0. 
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Comparing (6.6) and (5.10~) after invoking 9 h  = -hV*u, we infer that 

A = +l+f(% (6.8) 
where f is an arbitrary function oft. 

We now remark that it is consistent with the columnar approximation (2.3), which 
implies an O(e2) error on the right-hand side of (6.6), wherein the first and second 
terms are O(1) and O(E) respectively, to approximate u by Vh = Vq51 in the O(E) term. 
We then have (after dropping the subscript 1 from 4) 

u = vq5 +4hh-1V(h3V2q5), (6.9) 
where, here and subsequently, an O(e2) error is implicit. Substituting (6.9) into (6.4) 
and separating out a pure divergence term, which makes a null contribution to the 
variational integral, we obtain 

L = a[ (Vq5)Z - +(hV2q5)2 - g(h - H ) ]  + ih-1 v [(h3V2q5) V#], (6.10) 

which differs from the exact three-dimensional Lagrangian density for n = 0 by O(e2) 
and therefore is as good an approximation thereto as (6.4). The corresponding 
approximation to (6.5), after choosingf = -&$It in (6.8), is 

6 I J J h  [q5$ +f(Vq5)2-+(hV2q5)2 +%(h- 2H) +P] dz dy dt = 0, (6.11) 

which implies (through the variations 8+ and 6h) the Boussinesq-like evolution 
equations 

ht+V*(hVq5)+4V2(h3V2q5) = 0 ( 6 . 1 2 ~ )  

and q5t + i(Vq5)* -i(hV2q5)2+ P+ gq = 0. (6.12 b) 

These last approximations also may be obtained by substituting (6.8) and (6.9) into 
(1.4) and (6.7), but we wish to emphasize that, having adopted the approximation 
(6.10) to the Lagrangian density, (6.12) follow directly from the principle of least 
action without further approximation. It also is worth emphasizing that + and h are 
canonically conjugate variables in (6.11) and (6.12) (cf. Miles 1977). 

The evolution equations (6.12) are equivalent (for P = 0) to those derived by 
Whitham (1967, equations (9)-(11)) from a variational principle equivalent to (6.11), 
in which q5 appears as the velocity potential at the free surface, and u is the 
depth-averaged horizontal velocity derived from the z-dependent potential. It follows 
that, for flows originating from rest (so that the potential vorticity vanishes), the GN 
equations are reducible to a canonical generalization of the Boussinesq equations in 
which dispersion is weak but nonlinearity is fully accommodated. 

If nonlinearity is assumed to be of the same order as dispersion, i.e. if (1.7) is joined 
to (l.l),  (6.11) may be approximated by 

wherein O ( k )  terms are neglected. The corresponding variational equations are the 
canonical Boussinesq equations (1.8 a, b), whilst the corresponding approximation to 
(6.9) is (1.9). 

This work was supported in part by the Physical Oceanography Division, National 
Science Foundation, NSF Grants OCE81-17539 and OCE84-00259, and by the Office 
of Naval Research under Contract N00014-84-K-0137, NR 062-318 (430). 
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Appendix A. A variational identity 
We consider the variational integral 

r r  

where P is any differentiable function of x and T .  Invoking (2.7) for h, substituting 

into (A i),  and integrating by parts, we obtain 

= 1 jh- l  [V(haF)] 6x d V 

Appendix B. Ertel’s theorem 

reduces to 
In  the case of constant fluid density, Ertel’s theorem (Ertell942; Greenspan 1969) 

g3n, = 0, (B 1) 

where n, = (V, x U3)‘V, 8, (B 2 )  
us = (u, w) is the three-dimensional velocity, V, = (ax, ay, az), g3 = 9+ w a,, and 8 
is any scalar quantity for which 

9 , 8  = 0 .  (B 3 )  

If, as we have assumed, the fluid moves in vertical columns, then the vertical 
integral of l7, is conserved following the columns. That is, 

. 9 1 1 = O o ,  (B 4) 

where 

-H+h 
= h-l J-, l7, dz. 

Suppose 8 = zo /Ho.  It follows from (2.7)-(2.9) that 

and 
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For columnar motion, (B 2) reduces to 

= J(0, W) ae 

Substituting (B 6) and (B 7) into (B €9, and performing the integration in (B 5b), we 
obtain the equivalent of (5.3) and (C 3). 

We emphasize that the derivation of (B 4) from Ertel's theorem is not intended 
as a substitute for the derivation in $5. Ertel's theorem for three-dimensional flows 
is not consistent with the columnar approximation and its consequences in the 
preceding development, and the consistent result (B 4) depends on a special choice 
of 6 (B 6). 

Appendix C. Non-uniform depth 
Proceeding from (3.6) as in $94 and 5, but with 

67 = Gh-VH.6x 

rather than 67 = 6h, and distinguishing between H and H,, we obtain the equation 
of motion (4.6) with (cf. (4.5)) 

A = HV[hg2(q-+H)]+ (Vq) g 2 ( q - + H )  + (VH) 9 ' ( H - k ) }  (C 2) 

and the conservation law (5.6) with (cf. (5.5) and (5.9a) with n = 1) 

5* = g(9q-+gH, q ) + $ J @ H - + 9 q , H )  (C 3 4  

(C 3 b )  = $J(h-', h29h)-+J(h-', h29H)  -+J(9h, H )  + J(9H, H ) .  

The counterparts of (5 .10~)  with n = 1 and (5.10b) are 

u = V$ -#-l V(h2Bh) +;hh-' V(h29H)  + f ( g h )  V H -  ( 9 H )  VH (C 4a) 
= V @ - + ( 9 7 - + 9 H )  Vq- i (9H-+Bq)  VH,  (C 4b) 

whilst those of (6.9)-(6.12) are 

u = V$ + h-' V(?jh3V2$ ++h2VH* V$)  - (ihV2$ + VH*V$) VH,  

L = +[(V$)2-*(hV2q5)2- (hV2$) (VH*V$) - (VH*V$)2 
- g(h - 2H + H,)]  - P+ h-1 v [ ( y W $  + +h2VH* V$) V $ ] ,  

(C 5 )  

(C 6) 

6 JJJWt +f(V$)a-Q(hV2$)2-f(hV2$) (VH*V$)-+(VH*V$)2 

+$(h-2H)+P]dXdydt = 0, (C 7) 

qt+V*(hV$)+V2(~h3V2$+;h2VH.V~)-V*[(+h2V2$+hVH*V$)VH] = 0, (C 8a) 

and $t++(v$)2-;(hV2$+VH*V~)2+gq+P = 0. (C 8 b )  

The counterparts of the canonical Boussinesq set (6.14), (1.8) and (1.9) are 

6 JSJrla, ++hdh(V$)z-QwV2$)z -+(mv) (VH* V $ )  

-;H(VH*V$)'+$q2+Pq]dXd3(dt = 0, (C 9) 
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rt+V*(hV$) +V*[~II8VV.(Hv$)-+PVVZ$] = 0, 

$t +2(v$)z+gr +P = 0, 

(C 10a) 

(C lob) 

u = V$+~HvV*(HvQI)-+H2VV2$. (C 11) 
Substituting u’ = V$ into (C 10a) and the gradient of (C lob), we recover one of 
Peregrine’s (1967, equations (16)-( 18)) forms of the Boussinesq equations for variable 
depth. Substituting (C 11) into (C 10a,b), we recover Peregrine’s alternative form of 
the Boussinesq equations (ibid., equations (13) and (14), wherein ii = u above). We 
remark that the vorticity [ is not conserved here, but that fl‘ = k*V xu’ = 0 (cf. 
Peregrine’s equation (15)). See also Wu (1981), where% 3 = $++H2Va$+iHVH*V$ 
in the present notation. 

Linear approximation 
Neglecting the second-order terms in (C 8 b ) ,  we obtain 

T = -g-“$t +PI, (C 12) 
the substitution of which, together with h R H, into (C8a)  yields, after some 
reduction, 

gV.(HV$+~~VV.(Hv$)-~PVV~$} = $ t t + p t ,  
which is equivalent, for P = 0, to an earlier result of Miles (1985). 
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