
J. Fluid Mech. (1988), uol. 196, p p .  34r5358 

Printed in Greet Britain 
345 

Semigeostrophic theory 
as a Dirac-bracket projection 

By RICK SALMON 
Scripps Institution of Oceanography A025, La Jolla, CA 92093, USA 

(Received 15 December 1987 and in revised form 8 April 1988) 

This paper presents a general method for deriving approximate dynamical equations 
that satisfy a prescribed constraint typically chosen to filter out unwanted high- 
frequency motions. The approximate equations take a simple general form in 
arbitrary phase-space coordinates. The family of semigeostrophic equations for 
rapidly rotating flow derived by Salmon (1983, 1985) fits this general form when the 
chosen constraint is geostrophic balance. More precisely, the semigeostrophic 
equations are equivalent to a Dirac-bracket projection of the exact Hamiltonian 
fluid dynamics onto the phase-space manifold corresponding to geostrophically 
balanced states. The more widely used quasi-geostrophic equations do not fit the 
general form, and are instead equivalent to a metric projection of the exact dynamics 
on to the same geostrophic manifold. The metric, which corresponds to  the 
Hamiltonian of the linearized dynamics, is an artificial component of the theory, and 
its presence explains why the quasi-geostrophic equations are valid only near a state 
with flat isopycnals. 

1. Introduction 
This paper presents a method for deriving approximate dynamical equations that 

satisfy a prescribed constraint typically chosen to filter out high-frequency waves. 
The method is illustrated by application to the equations for a shallow homogeneous 
fluid in rotating coordinates. For simplicity, we suppose that the fluid is unbounded 
and quiescent a t  infinity, and that the Coriolis parameter is constant. This shallow- 
water system is a paradigm for the primitive equations of meteorology and 
oceanography. However, the methods proposed here are very general, and will be 
useful in other applications. 

The quasi-geostrophic equations are the best-known approximation to the general 
equations for rotating incompressible flow. Both the quasi-geostrophic equations and 
the semigeostrophic equations discussed below filter out inertia-gravity waves. These 
waves are unimportant contributors to weather and to the large-scale ocean 
circulation, but their presence attaches a severe penalty to the use of the primitive 
equations as the basis for numerical models. Unfortunately, the quasi-geostrophic 
equations apply to flows in which the fluid depth (or the mass density, in the case of 
a continuous stratification) departs only slightly from a prescribed, horizontally 
uniform state. As we show below, this restriction is not needed to filter out inertia- 
gravity waves, and is an artifact of the method by which the quasi-geostrophic 
equations are derived. 

The semigeostrophic equations (Hoskins 1975) apply to nearly geostrophic flow in 
which the free surface (or isopycnals) may be far from level. The semigeostrophic 
equations, which take a simple form in cleverly chosen ‘geostrophic coordinates ’, 
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have been widely used in meteorology. For a recent review, refer to Hoskins, 
McIntyre & Robertson (1985). However, Hoskins's form of the semigeostrophic 
equations conserves a form of the potential vorticity only if the Coriolis parameter 
is a constant. 

By approximations to Hamilton's principle, Salmon (1983, 1985) derived 
generalized semigeostrophic equations that apply to the geophysically important 
case of a spatially varying Coriolis parameter. The generalized semigeostrophic 
equations automatically conserve analogues of the exact invariants of the motion, 
because the approximations do not disturb the corresponding symmetry properties 
of the Hamiltonian. Moreover, the Hamiltonian derivation motivates a trans- 
formation to canonical variables, and these turn out to be the 'geostrophic 
coordinates '. However, despite these advantages, the specific procedure followed by 
Salmon (1983, 1985) seemed somewhat ad hoc. 

In  this paper we show that the methods of Salmon (1983, 1985) are not really ad 
hoc, and have an illuminating geometrical interpretation that permits generalization. 
More precisely, we show that the generalized semigeostrophic equations are 
equivalent to a Dirac-bracket projection of the exact shallow-water dynamics onto 
the phase-space manifold corresponding to geostrophic balance. The semigeostrophic 
equations take a simple general form in coordinate-free notation. The quasi- 
geostrophic equations do not fit this general form, and are instead equivalent to a 
metric projection onto the same geostrophic manifold. The metric, which 
corresponds to the Hamiltonian of the linearized shallow-water equations, is an 
artificial component of the theory, and its presence explains why the quasi- 
geostrophic equations are valid only near a state with flat isopycnals. 

The methods of Salmon (1983, 1985) and the present paper extend to fully three- 
dimensional, stratified flow. However, the fundamental ideas are best explained by 
application to the simpler case of a shallow homogeneous fluid in a uniformly 
rotating reference frame. 

2. Quasi-geostrophic equations as a Galerkin approximation 

angular velocity if about the vertical, are 
The equations for a shallow homogeneous fluid in coordinates rotating a t  constant 

and - _  - - V * ( u h ) .  
at 

ah 

Here, u = (u,v)(x, y , t )  is the horizontal velocity of the vertical fluid column at  
location (2, y) and time t ,  h(x, y, t )  is the fluid depth, g is the gravity, V = (az, aV), and 
f = fk where k is the vertical unit vector. For simplicity, we suppose that the fluid 
is unbounded and quiescent a t  infinity. Then the energy 

(2 .3)  

is exactly conserved. Let h, be the mean depth of the fluid. The quasi-geostrophic 
approximation to (2.1), (2.2) is 
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where now f x u = -gVy, (2.5) 

and 7 h-ho, (2.6) 
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is the free-surface elevation. It is easy to see that (2.4)-(2.6) i s  a close approximation 
to the exact potential vorticity equation, 

(;+u.!7)q = 0, q = (:I ---++f :; ) / ( h , + y )  

provided that the exact flow is nearly geostrophic, and that the free-surface elevation 
is small, 

Irl 4 ho. (2.8) 

The condition (2.8) is the previously mentioned artificial restriction. 
Leith (1980) has shown that the quasi-geostrophic approximation is really a 

Galerkin approximation, in which we first expand the exact flow in the complete set 
of modes of the linearized equations, and then discard both the modes corresponding 
to inertia-gravity waves and the projections of all time-derivatives onto these same 
modes. In the remainder of this section, we review Leith’s procedure for the shallow- 
water example. I n  the following section, we reformulate it in a coordinate-free, 
geometric notation for a general dynamical system. The general formulation 
pinpoints the fundamental flaw in the quasi-geostrophic approximation, and i t  forms 
an interesting contrast to  later results. 

Let the variables be resealed so that f = g = h, = 1 ,  and let 

U ( X ,  t )  = l I d k U ( k ,  t )  eik.x ( k  = ( k ,  I)), 

and ~ ( x ,  t )  be represented by spatial Fourier transforms in the usual way. Then if the 
shallow-water equations (2.1), (2.2) are linearized about the state u ( x )  = 0 and 
h(x)  = h,, the resulting equations can be written in the non-dimensional form 

. d  i-v = Hv, 
dt 

and H =  -i 0 I ,  (: 1 3 

(2.10) 

(2.11) 

(2.12) 

is a Hermitian matrix. The linearized equations exactly conserve the (non- 
dimensional) energy 

(2.13) 

The general solution to (2.10)-(2.12) is 

12 
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where w ,  and en are the eigenvalues and eigerivectors of H. Since H i s  Hermitian, the 
w ,  arc real, and 

where 

e i e ,  = ensem = anmenmen, 

denotes the transpose conjugate. We find that 

(2.15) 

0, = 0, w 1 , w 2  = f { l + k 2 + 1 2 } ~  (2.16) 

and e,  = (2.17) 

The zeroth mode corresponds to steady geostrophic motion, while the first and 
second modes correspond to inertia-gravity waves moving in opposite directions. 

Now regard v ( k , t )  as the state vector for the general nonlinear shallow-water 
system. The quasi-geostrophic approximation (2.4)--(2.6) is equivalent to the 

(2.18) 
projections 

e l - v  = e , . v  = 0 

and e ,  dv/dt = e2 - dy/dt = 0. (2.19) 

Equations (2.18), which define the ‘slow manifold ’, are simply the Fourier transforms 
of the equations (2.5) for geostrophic balance. Equations (2.19) can be combined with 
(2.18) and the general shallow-water equations (2.1)-(2.2) to yield the quasi- 
geostrophic potential vorticity equation (2.4). 

3. Quasi-geostrophic approximation in geometric notation 
We now repeat the foregoing derivation in a coordinate-free notation that applies 

to general Hamiltonian systems. This geometric formulation pinpoints the 
fundamental flaw in the quasi-geostrophic approximation. 

Let (zi(t), i = 1 to N )  bc coordinates in the N-dimensional phase space with 
dynamics 

Repeated indices are summed. Here H ( z )  is the Hamiltonian and Jii(z) is an 
antisymmetric contravariant tensor with the Jacobi property, 

The tensor Jij can be singular or not ; if Jii  is non-singular, then canonical coordinates 
exist. If Jij is singular with corank K ,  then there exist K independent GasirrLir 
functions (C(k) ,  k = 1 to K )  such that 

ac 
Jii* = 0 a t  every z .  (3.3) 

a23 

Let 
aF . .aG 

{ F , G }  -J2’- ax% a z 3 ’  

be the Poisson bracket, defined for any two phase 

(3.4) 

functions F ( z )  and G(z ) .  Then 

(3.5) 



Semigeostrophic theory as a Dirac-bracket projection 349 

where H is the Hamiltonian. Thus the whole dynamics is specified by the scalar H ( z )  
and the bilinear operator { , }. 

The shallow-water equations fit this general Hamiltonian form with infinite N .  
Two precise forms are convenient. In  the first, the coordinates zi are the velocities 
u(a) and locations x(a) of the fluid particle identified by Lagrangian labels a = (a ,  b ) .  
The index i corresponds to a, and time arguments have been suppressed. The labels 
are assigned so that da = hdx at all times. 

In  the second form, the coordinates are the velocities u ( x )  and fluid depth h(x) a t  
location x. 

The Hamiltonian in the two forms is 

and the corresponding Poisson brackets are 

(3.7a) 

(3.7b) 

where q is the potential vorticity defined in (2.7) and eij  is the permutation symbol. 
For a more thorough explanation of (3.1)-(3.7) refer to Salmon (1988). 

Now let z, be the stable fixed point corresponding to a state of rest and minimum 
energy. Since zo is a fixed point, it  follows from (3.1) and (3.3) that 

where A(,,,,are K constants, and C(k)  are the K Casimirs defined above. (Note that 
K = 0 if J” is non-singular.) By (3.3) and (3.8), the linearization of (3.1) about zo can 
be written 

= H i  Azk, 
. dAzi 

dt 
1- (3.9) 

. .  
where Z’ - z;, (3.10) 

H i  E i[Jij],gjk, (3.11) 

(3.12) 

+ A ( k )  c (k)  > (3.13) 

and [ lo means that the enclosed quantity is evaluated a t  zo. The linearized dynamics 
(3.9) conserves the energy 

H ,  = $ij Azi Azj. (3.14) 

Since zo is, by assumption, a state of minimum energy, the quadratic form (3.14) 
is positive definite. Then, since the gii are constants, there exist Cartesian coordinates 
in which the metric gii = Sii and the linearized energy is 

H ,  = $Azi Az’. (3.15) 
12-1 
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Equation (2.13) is a case of (3.15). In the Cartesian coordinates H i  is Hermitian. It 
follows that the eigenvalues 

w(l) < m(2) < . . . < " ( N ) ,  (3.16) 

of H i ,  which are the same in all coordinates, are real, and that the corresponding 
eigenvectors 

(3.17) e ( 1 )  1 e(2) 1 . . . e ( N )  

are orthogonal, (3.18) 

where * denotes the complex conjugate. 
For the moment, we work in Cartesian coordinates. Let {w(, )}  be the smallest 

M < N eigenvalues of H i  and let { e ( s , }  be the corresponding 'slow eigenstates'. Let 
{ w ( ~ ) )  and { e ( F ) )  be the remaining N - M  eigenvalues and corresponding 'fast 

(3.19) eigenstates '. Let 
= zo + C ( S )  e ( s )  

(where q,) are M constants) be an arbitrary point on the slow manifold, defined as 
the intersection of the N - M  hyperplanes 

< q F p  (z--z*)) = &)(4 = 0. (3.20) 

In  these Cartesian coordinates 
- W h  

azi . e ( F ) i  - - 

The approximate dynamics on the slow manifold are now defined to be 

(3.21) 

(3.22) 

where the N - M coefficients ,u(F) are determined by the requirement that the system 
remain on the slow manifold defined by (3.20). That is, 

= e & ' ) i [ { z i , H >  + P ( F ' )  e tF' ) ]  

== < e ( F ) >  ( '3 + P ( F ) ( e ( F ) t  e ( F ) > ,  (3.23) 

with no summation on F in the final expression. Here, { z , H )  is the vector with 
components {z$, ,H).  Thus (3.22) is equivalent to 

(3.24) 

where e"(,, is the unit vector in the direction of e C F ) .  The ri,pht-hand side of (3.24) is 
simply the metric projection of the exact expression { z ' ,H}  for dzi/dt onto the 
hyperplanes defined by (3.20). 

We now write our final results in a form valid in arbitrary phase coordinates zi. 
This covariant formulation reveals the fundamental ingredients of the theory. In  a 
general Hamiltonian phase space, let 

# ( 1 ) ( ~ )  = 0 ( 1  = 1 to N - M ) ,  (3.25) 

be the equations for an arbitrarily prescribed M-dimensional slow manifold. We 
assume, with no loss in generality, that  the constraint functions are real. (The 
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equations (3.20) can always be rearranged so that this is so.) The constraints (3.25) 
might be obtained, as above, from an analysis of the linearized dynamics, but we now 
make no restrictions. Let F ( z )  be an arbitrary phase function. Then the approximate 
evolution of F ( z )  on the slow manifold (3.25) is defined to be 

(3.26) 

and (3.28) 

and the metric g, is defined by (3.12). Equations (3.26)-(3.28) (with F ( z )  = zi) express 
the same physics as (3.22), (3.23) in general non-Cartesian coordinates. 

The covariant formulation (3.26)-(3.28) reveals that the quasi-geostrophic 
approximation has the following fundamental ingredients : the Hamiltonian H (  z )  and 
Poisson brackets { , } of the exact dynamics, the constraint functions qbat(z) defining 
the slow manifold, and the metric gii obtained from the Hamiltonian (3.14) for the 
linearized dynamics. 

The metric gij is the objectionable feature of the theory. Phase space has no natural 
metric, and the global imposition of the metric (3.12), which depends only on the 
local dynamics near z,,, is extremely artificial. It is therefore unsurprising that the 
resulting approximation becomes inaccurate for z far from z,,. 

Two earlier papers (Salmon 1983, 1985) derived semigeostrophic approximations 
to the shallow-water equations that are free of the artificial restriction on the quasi- 
geostrophic approximation that z be close to zo. (The term semigeostrophic has a 
precise meaning in meteorology, but here I use it to denote a general class that 
includes the conventional sernigeostrophic approximation.) Although the methods 
used to derive these approximations were somewhat wd hoc, they were firmly based 
on Hamiltonian theory. In  $ 4  we show that, when the semigeostrophic approximation 
of Salmon (1985, $2) is written in a geometrical notation analogous to (3.26), (3.27), 
the result is 

(3.29) 

where = {# ( l ) jH1+P(m){# (1 )7  #(rn)>, (3.30) 

and the constraint equations (3.25) are the same equations of geostrophic balance as 
in the quasi-geostrophic theory. Equations (3.29), (3.30) differ from (3.26), (3.27) 
only in that the Poisson bracket { , ) replaces the metric product ( , ). 

That is, the quasi-geostrophic and sernigeostrophic approximations take the 

and 

(3.31) 

(3.32) 

where, in both cases, the N - M  coefficients ,qt, are determined by the N - M  
requirements 

d#(l) - 0 
dt 

(3.33) 
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that the phase-space trajectories of the approximate dynamics remain on the slow 
manifold (3.25). Equation (3.32) differs from (3.31) only in that the symplectic tensor 
Jij replaces the artificial metric gij. 

The general equations (3.29), (3.30) were derived by Dirac (1950, 1958) in a 
different context. The right-hand side of (3.29) is called the Dirac bracket of F and H ,  
and an extensive literature exists. (My use of the term ‘Dirac-bracket projection’ is 
unconventional, and is designed to emphasize the analogy between (3.31) and (3.32)). 
The relevant part of Dirac’s theory will be sketched in $4. In $5, we turn to the 
question of how best to choose the constraint functions $ ( L , ( z )  that define the slow 
manifold. It turns out that many choices for the constraint functions filter out high- 
frequency motion. The optimum choice is that  for which the equations (3.29), (3.30) 
take the simplest mathematical form in coordinates that cover the slow manifold. 

4. Semigeostrophic approximation in geometric notation 

from Hamilton’s principle in the form 
As shown by Salmon (1983, 1985), the shallow-water equations (2.1)-(2.2) result 

for variations 6ui(a, t ) ,  6xi(u, t )  in the velocities and locations of marked fluid 
particles. Here, ui is the velocity in the xi-direction, and H is the Hamiltonian (3.6a). 
The principle (4.1) is analogous to 

0 = 6 dt pi/-H(p,q) , ] 
for variations 8pi(t), 6qi(t) in general canonical coordinates. In (4.2) the subscript i is 
analogous to a and the directional subscript on velocity or location. 

Salmon (1985, $2) derived a semigeostrophic approximation by replacing u(a, t )  in 
(4.1) by its geostrophic value (2 .5) ,  which is a functional of x(a,t) .  In  the simpler 
notation of (4.2), 

where the $i are 
result from 

this replacement takes the form: 

pi = $i(q), (4.3) 

prescribed functions of all the qj. The semigeostrophic equations 

for variations 6qi(t). We find that 

(4.4) 

(4.5) 

where the symbol ‘=’  denotes the equality holds only on the slow manifold (4.3). 
We next rewrite the constraints (4.3) in the form 

$i(P, 4 )  f Pi+i(q) = 0, 

and define the Poisson bracket 

(4.6) 

(4.7) 
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This definition agrees with (3.4) in the case of canonical coordinates. After some 
manipulation, (4.5) is equivalent to 

If {$i, $j} is non-singular, then dqi/dt can be found. For non-singular {$(, $?}, (4.8) is 
equivalent to  (3.29)-(3.30). 

We now take a broader view. Let 

$ ( I ) @ )  = 0 (4.9) 

be any N - M independent constraints defining an arbitrary M-dimensional manifold 
in phase space. We require that the exact Langrangian in (4.2) be stationary subject 
to the constraints (4.9). That is, 

(4.10) 

for variations Gzi(t) and 6,u(l)(t), where ,qz, are the Lagrangian multipliers 
corresponding to (4.9). These variations yield 

(4.11) 

and (4.9). Let F(z )  be an arbitrary phase function. By (4.11), the change in F ( z )  
following a phase point moving on the manifold (4.9) is given by 

(4.12) 

(4.13) 

so that the trajectory (4.11) remains on (4.9). For the moment, { $ ( L ) , $ ( r n ) }  can be 
singular. 

Dirac (1950, 1958) derived (4.12)-(4.13) as the exact equations for a dynamical 
system with a singular Lagrangian. A Lagrangian is called singular if the defining 
eauations 

aL p .  = ' a(dq,/dt)' 
(4.14) 

cannot be solved for all of the dqi/dt in terms of p and q. If the Lagrangian is singular, 
then, as shown by Dirac, constraints exist that  restrict p and q to a manifold in phase 
space. The determination of these constraints is a non-trivial matter. For a thorough 
discussion of the theory, refer to Dirac (1964), Hanson, Regge & Teitelboim (1976), 
Sundermeyer (1982), and Sudarshan & Mukunda (1983). However, in the present 
context, the constraints (4.9) are prescribed and constitute an approximation to the 
exact dynamics. Although much of Dirac's theory can be taken over, the situation 
is actually somewhat simpler. 

Returning to our problem, let the $( l , ( z )  be a trial set of constraint functions 
defining a candidate slow manifold. If {$(z), $(m,} is non-singular everywhere on (4.9), 
then (4.12)-(4.13) define a unique trajectory through every point on the slow 
manifold. 
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Now suppose that (q5(1) ,  gem,> is singular. Let ej(z)  be the j t h  null eigenvector, 

(4.15) 

(4.16) 

for eachj. If the additional constraints (4.16) are not automatically satisfied on (4.9), 
we add those xj(z) that  are independent of the $ ( l ) ( z )  and each other to  the set of trial 
constraints (4.9) and begin anew. The new slow manifold has a lower dimension by 
the number of independent xi. We continue this process until no new independent 
xj turn up. In a finite-dimensional phase space, this process must terminate. In  an 
infinite-dimensional phase space, we require that it terminates, and call the resulting 
$( I , ( z )  consistent. 

If the ~ $ ( ~ ) ( z )  are consistent, then { q 5 ( z ) , $ ( m ) )  may be singular, but (4.16) are 
automatically satisfied. In  this case, let U(,)(z) be a particular solution of (4.13). The 
general solution is 

~ ( m )  = U ( m )  + ~ j e ( m ) j ,  (4.17) 

where w j ( t )  are arbitrary functions of time. The slow dynamics (4.12) then 
becomes 

(4.18) 
dt 

where @ j  = e(1)j q 5 ( 1 ) .  (4.19) 

In  the exact case considered by Dirac, the arbitrary functions w j ( t )  correspond to 
physically irrelevant choices of gauge. However, in the general approximation theory 
considered here, changes in wj(t) might conceivably cause physical differences, 
signalling a flaw in the initial choice of constraints. In  practice, this must always be 
checked. With this single caveat, the general approximation theory is complete 
except for guidelines on the choice of constraints. 

q5cm,> is non-singular then the approximation (4.12)-(4.13) has a simple 
interpretation in the more abstract language of differential forms. Let the exact 
dynamics (3.1 ) be expressed 

i ,w = dH, (4.20) 

where X is the vector dzi/dt, i, w is the contraction of X with the closed two-form 
w corresponding to { , >, and dl l  is the exterior derivative of the Hamiltonian H .  Then 
the slow dynamics is equivalent to 

‘ = ’ v, HI + U ( , ) P ,  $ ( 1 ) >  + W j ( F ,  @jL 

If 

iX6Jln.r = WI,, (4.21) 

where al, denotes the restriction of a differential form a to the slow manifold M .  See, 
for example, Schutz (1980, p. 120). However, I much prefer the coordinate notation, 
which is anyway needed for calculations. 

We conclude this section by demonstrating how Dirac’s algorithm works in a 
familiar case. We again regard the shallow-water equations as exact, and consider 
the trial constraints 

h ( x )  = h, (constant). (4.22) 
Then (4.13) becomes 

0 = Ch(4, HI + /ldx’ph(x’) {hfx), W)f. (4.23) 

By (3.7b), {h (x ) ,h (x ’ ) )  = 0. Thus ph is undetermined, and we have the consistency 
requirement 

{h ,Hj  = - V . ( u h )  = - h , V . u  = 0. (4.24) 
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We now start all over again with the combined constraints 

h(x) = h,, v-u = 0. 

The conditions (4.13) become 

0 = ih(x) ,H}+JJdx’pA(x’)!h(x) .  d(X’)}> 

JJ JJ and 0 = {d(x),H}+ dx’y,(x’){d(x), h(x’)} + dx’,uA(x’)(d(x), d(x’)}, 

where d = V . U .  By (3.7b) 
{h(x), d(x’)] = -V26(X-X’). 

v2pu, = 0, Thus (4.26) reduces to 

355 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

on (4.25). This implies,uA = 0 in the infinite geometry considered. Then (4.27) reduces 
to 

0 = -V.[(u.V)u]-V2pL,, (4.30) 

which determines p,. The slow dynamics (4.12) is 

(4.31) 

With F = u(x), (4.30) and (4.31) are equivalent to Euler’s equations for a two- 
dimensional incompressible fluid. The coefficient y h  turns out to be the pressure. This 
derivation by way of Dirac’s algorithm applied to (4.22) seems very roundabout, but 
it nicely demonstrates how the algorithm automatically enlarges a set of trial 
constraints to  produce a consistent slow dynamics. 

5. Guidelines on the choice of constraints 
The preceding section shows how to test and (if necessary and possible) how to 

augment a set of trial constraints to define a consistent slow manifold. With the slow 
manifold defined, the slow dynamics are uniquely determined by (4.12), (4.13). But 
how do we select these constraints in the first place ? No general algorithm has been 
found, but the following summary of textbook results suggests that the general 
strategy followed by Salmon (1985) is a good one. Many choices of slow manifold will 
filter out high-frequency motions, but the best choice is that for which the resulting 
approximate dynamical equations take their simplest mathematical form. 

We again consider an N-dimensional phase space with general coordinates zi and 
exact dynamics determined by the Poisson bracket (3.4) and Ha.miltonian H ( z ) .  We 
now assume that Jii  is non-singular so that canonical coordinates exist. This is not 
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a serious restriction, because the formulation of fluid mechanics in Lagrangian 
variables always has this property. Let wii be the inverse of J @ ,  

= @ (5.1) 

and let Fl(z), F2(z), . . . , E ' , ( x )  be N independent phase functions. Then the Lagrange 
bracket of F, and F, is defined by 

Thus wii = [ x i ,  z q .  (5.3) 

Now let @ ( z ) ,  a = 1 to  N - M ,  be N -M consistent constraint functions defining an 
M-dimensional slow manifold. (We now write @ ( z )  instead of $ ( m ) ( z )  to emphasize 
that the q!f can serve as N - M  of the coordinates.) We assume that no arbitrary 
functions of time occur in the slow dynamics. Then {@, $p} is non-singular, and the 
slow dynamics is given by 

dF 
dt = ( F ,  HID, (5.5) - 

where (5.6) 

is the Dirac bracket. 
Next let yi be any M coordinates that cover the slow manifold. Then (y', . . . , y M ,  

#', ...,#"-") are a set of N independent coordinates that cover the whole phase 
space. Let 

be the restriction of F to the slow manifold. Then 

v, GI, = { F ,  GI - cp, $a} C@, $P>-' { $ P >  GI, 

E'(Y) = F ( Y ,  # = 01, 

{F>GI, = {m,, (5.8) 

(5.7) 

and the slow dynamics can be written 

dP 
- = { @ , E l } , .  
at 

(5.9) 

(5.10) 

Equation (5.10) follows from (5.3)-(5.6) (see, for example, Sudarshan & Mukunda 
1983, pp. 12@122). Equation (5.4) further implies t)hat 

Ĵ ii iYC, yf]-l, (5.11) 

obeys (3.2). Thus (5.9)-(5.10) satisfies the hypothesis of Darboux's theorem : The 
slow dynamics is a Hamiltonian dynamics on the slow manifold, and canonical 
coordinates exist. This shows what can be accomplished in principle. In  practice, 
canonical coordinates might be hard to find, and the Hamiltonian H might have a 
complicated dependence on the canonical coordinates. However, we have the 
flexibility to adjust the yP defining the slow manifold, and to replace H by any 
reasonable approximation upon it. Salmon (1985) used both of these strategies. 
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As already explained in $4, Salmon (1985, $ 2 )  obtained the first of his 
semigeostrophic approximations by replacing 

(5.12) 

(5.13) 

where uG = k x  V(gh/f) is the geostrophic velocity, a functional of x(a,t). The 
equation for the slow manifold corresponding to (5.13) is thus 

u = UG. (5.14) 

Unfortunately, (5.13) does not have the form of canonical coordinates. Canonical 
coordinates exist for (5.13) by the foregoing general theory, but they are hopelessly 
difficult to calculate. 

Salmon (1985, $3) overcame this difficulty by noting that (5.12) could be replaced 

by r r  

(5.15) 

instead of (5.13), where xi = xi+"iiuGj/f, (5.16) 

are Hoskins' ' geostrophic coordinates '. The expression (5.15) has the form of 
canonical coordinates, and i t  differs from (5.12) by the same size error as does 
(5.13). 

Now either xi(a) or X , ( a )  cover the slow manifold. Substitution of (5.16) into (5.15) 
and straightforward but tedious calculations show that 

Equating the coefficients of &x,(a) in (5.12) with those in (5.17)) we discover the 
constraints 

U = UG+(Z~)-'(UG*V)(UG X k) (5.18) 

that define the slow manifold for the semigeostrophic equations of Salmon (1985, $3). 
The last term in (5.18) is small for nearly geostrophic flow. 

In summary, the tremendous simplification of canonical coordinates has been 
achieved by changing the slow manifold, by a tiny amount, from (5.14) to  (5.18). The 
constraints (5.18) are more complicated than (5.14), but the corresponding dynamical 
equations are much simpler. It is much better to have simple equations for the slow 
dynamics than it is to have simple equations for the slow manifold, because the latter 
are needed only for transforming results back into the original coordinates. 

Research supported by the National Science Foundation Grant OCE86-01399. I 
am deeply indebted to Philip J. Morrison for telling me about Dirac brackets. 
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