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Generalized two-layer models of ocean circulation 

by Rick Salmon’ 

ABSTRACT 
The assumption that surfaces of constant temperature and potential vorticity coincide leads 

to an exact, time-dependent reduction of the ideal thermocline equations in an ocean basin of 
arbitrary shape. After modifications to include forcing, dissipation, and the presence of the 
equator, these reduced equations form the basis for numerical models that are both more 
realistic and easier to solve than the conventional two-layer model. 

1. Introduction 

Like many equations in fluid mechanics, the ideal thermocline equations, (2.1-2) 
in standard notation, comprise a system of quasi-linear, first-order partial differential 
equations. Such systems are amenable to the method of characteristics, but only in 
the case of two independent variables.2 Unfortunately, the ideal thermocline equa- 
tions contain the four independent variables (x, y, z, t). However, time-independent 
solutions of (2.1-2) are frequently of interest; this reduces the number of indepen- 
dent variables to three. 

In layered models of the ocean circulation, one assumes that the ocean consists of 
immiscible layers of uniform density, separated by meniscuses at which the density is 
discontinuous. A second independent variable (z) is thereby removed at the rela- 
tively low cost of increasing the number of dependent variables, which then include 
the layer thicknesses. In steady state, the layered models depend only on (x, y), and 
the method of characteristics therefore applies in regions of negligible dissipation 
(where the equations are, approximately, first-order). These facts underlie the many 
relatively successful analytical attacks on layered equations (see, for example, Luyten 
et al. (1983) for an important and influential example). The theory of (2.1-2) is 
comparatively meager. 

In this paper, we show that layered models are neither the only, nor probably the 
best, method for reducing the number of independent variables in (2.1-2). In 
particular, we consider solutions of the form 

8 = 0 
i 
; + S&y, t) 

1 
(1.1) 

1. Scripps Institution of Oceanography, La Jolla, California, 92093-0225, U.S.A. 
2. For a discussion of this point, see for example Whitham (1974, p. 139). 
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where 0 is the temperature, O( ) is an arbitrarily prescribed function of a single 
variable, and S(X, y, t) remains to be determined. The other symbols have their usual 
meanings, explained fully below. We call O( ) theprojilefunction of the model. The 
physical interpretation of S depends on the choice of profile function, but if, as in 
nearly all of the cases we consider, O(c) or its derivative is discontinuous at E = 0, 
then z = -yS is the vertical location of this discontinuity, and (taking z = 0 to be the 
ocean surface) h = yS is the thickness of the fluid layer above it. 

Our fundamental ansatz (1.1) is equivalent to the assumption that surfaces of 
constant 8 and potential vorticityy8, coincide. Such special assumptions have been 
common in oceanography, beginning perhaps with Welander’s (1971) seminal paper. 
Indeed, Needler (1971) investigated solutions of the general form (l.l), anticipating 
some of the results in Sections 2 and 3 below. Cushman-Roisin (1984) and others 
have investigated solutions of the form (1.1) with O( ) chosen to be an exponential 
function. In this paper, we show how (1.1) forms the basis for a simple, full-basin 
circulation model in an ocean with arbitrary bottom topography, and we present 
numerical solutions for several realistic choices of O( ). 

In Section 2, we confirm that (1.1) is consistent with the ideal thermocline 
equations (2.1-2) and with boundary conditions of no-normal-flow at the ocean 
surface and bottom, in the sense that substitution of (1.1) into (2.1-2) and its 
boundary conditions (2.9-10) yields an evolution equation, (2.19) for S(x,y, t), in 
which the vertical coordinate, z, does not appear. This evolution equation contains a 
second dependent variable, the transport streamfunction I&Y, t), for which another 
z-independent equation, (2.17), must be developed. The ideal thermocline equations 
(2.1-2) and their boundary conditions are then satisfied by solutions of (2.17, 19). If 
the arbitrary function O( ) in (1.1) is a step-function, then (2.17, 19) reduce to the 
conventional (ideal) equations (2.28,29) for a two-layer fluid, where h = yS is the 
depth of the upper layer. We therefore call (2.17,19) the (ideal form of the) 
generalized two-layer equations (GTLE). 

Although the conventional two-layer equations form the basis for many analytical 
studies of large-scale circulation, they have two important disadvantages: First, 
numerical solution is difficult when the meniscus between layers intersects the ocean 
surface or bottom; and, second, the observed ocean does not closely resemble a 
system of two homogeneous layers. 

The GTLE based on (1.1) offer a way to overcome both difficulties. If two 
homogeneous layers are really wanted, then the step-function can be replaced by a 
O( ) that varies rapidly but continuously between the temperature values of the 
layers. The surface intersection of the boundary between layers is then a region of 
rapid but continuous temperature change, whose precise location need not be 
explicitly followed. This overcomes the technical numerical difficulty of following the 
outcropping meniscus in the conventional two-layer model. However, the observed 
ocean more closely resembles two layers with different, nonzero stratifications 
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separated by a smooth transition, than it does two layers of uniform density 
separated by a sharp jump. In this paper we show that a more realistic choice of O( ) 
yields solutions that better resemble the ocean, without cancelling any of the other 
advantages of the conventional two-layer formulation. Those other advantages are 
maintained because the reduction to two independent variables-by whatever 
means-allows the method of characteristics to apply. 

In Section 3, we illustrate the power of the method of characteristics by construct- 
ing the general steady solution of the ideal GTLE. This solution generalizes the 
result of an earlier paper (Salmon, 1992; hereafter S92) for the conventional case of 
two homogeneous layers. For the conventional two-layer case, S92 proposed a 
particular steady solution that resembles the flow along the continental slope east of 
North America. In this solution, a frictional internal boundary layer containing a 
strong southward flow separates a seaward region of uniform upper-layer potential 
vorticity from a landward, Gulf Stream region of uniform lower-layer potential 
vorticity. Now, all of the results of S92 extend to the GTLE, which are however much 
more amenable to numerical solution than are the conventional two-layer equations. 
Thus, the GTLE may help to settle the question of whether solutions like those 
proposed by S92 actually occur as pieces of whole-basin solutions with realistic 
forcing and dissipation. This motivated the present study. 

Unfortunately, forcing and dissipation destroy the special status of the ansatz 
(1.1). That is, (1.1) is not precisely consistent with the generalization (4.1-2) of 
(2.1-2) to include forcing and dissipation. As explained in Section 4, the only 
recourse is to admit the forcing and dissipation as a Galerkin-type projection onto 
the ideal dynamics. (A similar procedure removes the singularity in (1.1) at the 
equator, y = 0.) The resulting equations, (4.4, 31), generalize the GTLE to include 
forcing and dissipation terms. This strategy of projecting nonconservative effects onto 
a flow representation, (1.1) chosen for its special relationship to the conservative 
dynamics is really the same strategy followed in the conventional two-layer formula- 
tions, where (for example) one replaces the wind-forcing by a vertically uniform 
body-force in the upper layer, to preserve the assumed depth-independence of 
horizontal flow in each layer, and where (to give another example) one sometimes 
models the vertical diffusion of temperature as an exchange of mass between layers, 
ignoring the fact that real diffusion would smooth out the sharp temperature jump 
between layers. Outside the equatorial region, and outside regions with significant 
dissipation, solutions based on (1.1) retain their two special properties: they are 
exact solutions of the corresponding three-dimensional equations (2.1-2), and they 
are amenable to the method of characteristics. Inside the equatorial region, and 
inside boundary- and internal-layers with significant dissipation, our final equations 
have the status of an ordinary Galerkin approximation. 

Following a brief discussion, in Section 5, of some previous work on the conven- 
tional two-layer model in oceans with uniform depth, we turn in Section 6 to 
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numerical solutions of the GTLE in a model ocean bounded on three sides by 
coastlines at which the ocean depth vanishes smoothly. The southern, equatorial 
boundary is open, and cross-equatorial symmetry is assumed. The numerical calcula- 
tions show that the torque resulting from the joint effect of baroclinicity and 
topography greatly increases the depth-averaged component (i.e., the +-component) 
of the circulation, and causes a northward extension of the Gulf Stream along the 
western continental slope. The baroclinic, S-component of the circulation is very 
sensitive to the imposed forcing and, particularly, to the prescribed volume of warm 
“upper layer” fluid. This sensitivity can be partly understood by mapping the 
characteristic velocity of the general S-equation (4.31). This characteristic velocity- 
the velocity at which information about temperature or potential vorticity flows from 
one region to another-has three principal components. One component is the 
depth-averaged velocity; a second component corresponds to westward propagation 
at the speed of internal Rossby waves; the third component parallels the isobaths, in 
the direction of topographic Rossby waves. When the total volume of warm water is 
relatively large, the westward Rossby propagation predominates in mid-ocean, the 
North Atlantic Current shifts toward the western boundary, and there is relatively 
little cold water outcropping in the subpolar gyre. When the total volume of warm 
water is relatively small, the eastward depth-averaged flow predominates in the 
subpolar gyre, the North Atlantic Current shifts southward and eastward, and the 
area of cold-water outcrop is large. Shock layers in the temperature field occur along 
lines at which the characteristic velocity converges. The characteristic velocity is thus 
a useful diagnostic tool, but it is no substitute for a completely deductive theory of 
the GTLE. Concluding remarks in Section 7 emphasize the shortcomings of the 
current numerical implementation and the prospects for such a theory. 

2. Generalized two-layer dynamics 

Our starting point is the ideal thermocline equations-or, as they are coming to be 
called, the planetary geostrophic equations-which, in nondimensional form, and 
temporarily omitting all forcing and dissipation terms, are 

-fi = -4% 
fu = -$I 
0=-c&+0 (2-l) 

u, + vy + Iv, = 0 

and 

0, + uo, + voy + we, = 0. (2.2) 
As usual (u, v, w) is the velocity in the (east, north, vertical) direction with coordinate 
(x, y, z), + is the pressure, 0 the buoyancy (which we will call temperature), t the time, 
f = y is the Coriolis parameter, and coordinate subscripts denote differentiation. 
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The ideal equations (2.1-2) conserve the temperature 0 and the potential vorticity 
~0, on fluid particles. Thus, if at some initial time 

Y% = G(e) (2.3) 

where G is an arbitrary function of a single argument, then (2.3) holds at all future 
times. This is true even in the presence of a rigid horizontal lid and a nonvertical 
bumpy bottom, because (as we see below) the boundary condition of no-normal-flow 
at such boundaries can be satisfied by the dynamics (2.1-2) without the need for 
dissipation (which would destroy the conservation of temperature and potential 
vorticity). 

Solving (2.3) for 8, we find that 

0 = F” ; + S(x, y, t) (2.4) 

where F” (-0) is another arbitrary function, related to G, and the primes, which 
denote differentiation, are introduced for later convenience. Again, (2.4) is the basic 
ansatz of this paper. To obtain the equation governing S(x, y, t), we substitute (2.4) 
back into (2.1-2). First recall that every solution of (2.1) can be written in the form 

1 1 1 
4 = M, O=M,, UC---&f zy ’ v=-M 

Y Y XY w=,M 
Y 

x (2.5) 

where M(x, y, z, t) is Welander’s potential function. Substituting (2.5) into (2.2) we 
obtain the familiar equation, 

Now, two integrations of (2.4) yield 

M = y2F 
i 
; + S(x, y, t) + zP(x, y, t) + D(x, y, t) (2.7) 

where S(x, y, t), P(x, y, t) and D (x, y, t) must all be determined. Substituting (2.7) into 
(2.6), we obtain the evolution equation for S(x, y, t), 

where J(A, B) = AxBy - A,& is the horizontal Jacobian. To obtain equations for 
P(x, y, t) and D(x, y, t), we apply the no-normal-flow boundary conditions at the 
ocean surface, 

w=O at z=o (2.9) 
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and bottom, 

w= -uH,-VH at 
Y  

z = -H&y). 

By (2.5) and (2.7) (2.9) is 

so that (2.8) becomes 

y2F’(S)S, + 0, = 0 

as 1 
z + yJ(P, S) - t&F(S) = 0. 

The bottom boundary condition (2.10) will now be satisfied if 

1 = 0 

that is, if 

s 

0 S 0 
-gdz = -ey and -Hv dz = +x 

I% 5 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

for some $(x, y, t). By (2.5) and (2.7), (2.14) are 

- ySy F’(S) - fPy = -$, (2.15) 

and 

(2.16) 

Eliminating $ between (2.15-16) yields a second equation for P and S. However, it is 
more convenient to use the transport streamfunction I#, y, t) instead of P&y, t). 
Eliminating P between (2.15-16) we obtain the equation for +, 

(2.17) 

where 

Y=y+‘(S)-F(S-f)-;F’(S-f)]=-f~zOdz. (2.18) 

The last equality in (2.18) follows from (2.4). Then, solving (2.15-16) for P, and P,,, 
and substituting the result into (2.12) we obtain the S-equation in the form 

H$+J($,S) +c;=O (2.19) 
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where 

871 

-fF’(S) -fFr 

and c/H is the internal Rossby phase speed. Note, using (2.4) that 

1 0 
CC- 

Y 
2 S y(z + H)8,dz < 0 

(2.20) 

(2.21) 

corresponding to westward phase propagation (for a statically stable profile function). 
For given F( ), (2.17, 19) are closed equations for $(x, y, t) and S(x, y, t) whose 

solutions correspond to exact solutions of the ideal thermocline equations (2.1-2) in 
an ocean of depth H(x, y), with boundary conditions of no-normal-flow. The evolu- 
tion equation (2.19) for S is analogous to (2.2); S determines the three-dimensional 
temperature field by (2.4). G iven S(x, y, t), (2.17) determines 4, and hence (u, v, w), 
in the same way that (2.1) and the surface- and bottom-boundary conditions 
determine the three-dimensional velocity field from 8. However, neither (2.1) nor 
(2.17) can satisfy the coastal boundary condition ~JJ = 0 at H = 0 unless friction is 
added to the horizontal momentum equations in (2.1). That is, although friction is 
not required to prevent flow through the ocean surface or bottom, it is required to 
prevent a mass flux through the cusp at H = 0. The friction converts the hyperbolic 
equation (2.17) into an elliptic equation for 9. We defer further discussion of friction 
to Section 4, where we address the general problem of adding forcing and dissipation 
to the dynamics (2.17, 19). In the remainder of this section, we consider some special 
cases of the ideal-fluid dynamics (2.17, 19) corresponding to particular choices of the 
profile function F”. 

Surely the simplest case of (2.4) is the case of uniform temperature, F = 0, for which 
(2.17) reduces to J(+, y/H) = 0 and (2.19) dissolves.3 More interesting is the case of 
uniform potential vorticity, yt3, = Q (constant), corresponding to 

F(E) = %Qt3 

for which, defining T(x, y, t) = QS(x, y, t), (2.4) becomes 

(2.22) 

e=Q;+T(x,y,t) 

and (2.17,19) reduce to 

=O 

(2.23) 

(2.24) 

3. The dynamics (2.17, 19) are of course fully determined by the choice of F”(c), which leaves F(E) 
undetermined by A + Be; the terms containing the constants A, B cancel in (2.17, 19). Actually, 6 is itself 
arbitrary to within a constant, so that F(c) IS undetermined byA + Be + Cc2. We shall, however, adopt the 
convention of prescribing F(E). 
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(2.25) 

Eqs. (2.24,25) are perhaps the simplest dynamical equations that incorporate the 
effects of baroclinicity and bottom relief. 

The choice 

with h (x, y, t) defined by 

(2.26) 

(2.27) 

corresponds to the conventional two-layer model, in which an upper layer of depth 
h&y, t) and uniform temperature g’ overlies a layer of zero temperature. (The g’ 
notation anticipates the dimensional form.) That is, with (2.26), (2.17, 19) reduce to 
the conventional two-layer equations, 

J(+,$) + J(;,;g’h2) = o 

and 

(2.28) 

(2.29) 

for 0 < h(x, y, t) < H. For h < 0 or h > H (2.17, 19) reduce correctly to the 
homogeneous-fluid limit, in which the upper or lower layer fills the water column. 
For an independent derivation of (2.28,29), see for example Salmon (1992). 

Ford (1992) has considered the corresponding case of a layer with uniform 
potential vorticity ~0, = Q and thickness h overlying a layer of uniformly zero 
temperature, with no temperature jump between the layers, corresponding to (2.4) 
and the choice 

(2.30) 

This temperature structure may resemble the observed ocean more closely than the 
conventional homogeneous-temperature-layers case. For 0 < h < H, Ford’s equa- 
tions are 

+,j$) +~(f,i$) =0 (2.31) 
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(2.32) 

Although analytically simple, the two-layer dynamics (2.28,29) or (2.31,32) are an 
awkward basis for numerical experiments, because it is difficult to follow the 
outcropping line, h = 0, of the meniscus between the layers. From the perspective of 
(2.4), this difficulty occurs only because the choices (2.26) or (2.30) correspond to 
F(t) with discontinuous derivatives. However, we can completely overcome this 
difficulty by replacing (2.26) and (2.30) by 

F(E) = %g’E2W (2.33) 

and 

m = %QS3NE) (2.34) 

respectively, where 

h(k) =i[tanh(:) + 1) (2.35) 

is a smooth approximation to the Heaviside function, which increases from zero to 
unity in an interval of order d centered on 5 = 0. The resulting forms of (2.17, 19) 
approach (2.28,29) and (2.31,32) as d + 0. However, when d > 0, there is no need 
to follow the outcropping meniscus explicitly, because the temperature (2.4) and its 
derivatives are everywhere continuous. That is, when d > 0 is small, and 0 < h < H, 
then h(x, y, t) defined by (2.27) retains its physical interpretation as the depth of the 
upper, uniform-temperature or uniform-potential-vorticity “layer,” but the line h = 
0 is a line of large butfinite surface temperature gradient. The cased > 0 is also more 
realistic, because the observed main thermocline is actually several hundred meters 
thick. 

In this paper, we analyze analytical and numerical solutions of the generalized 
two-layer equations (GTLE), (2.17, 19) with forcing and dissipation terms added, 
for several choices of the profile function F(c). For any F(t), the GTLE contain the 
two dependent variables $(x, y, t) and S(X, y, t), which do not depend on the vertical 
coordinate z. This reduction in the number of the independent variables is the really 
significant simplification of the theory, and it is the basis for the general solution of 
the ideal GTLE in Section 3. Other methods of reduction besides the ansatz (2.4) are 
possible (see e.g. Salmon and Hollerbach, 1991) and at least one method yields a 
system withfour vertical degrees of freedom: Ford (1992) has considered the case of 
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two immiscible layers of uniform potential vorticity, corresponding to the tempera- 
ture structure 

/ z 
QI - + TI(x,Y, t) 

e=l ; 

= > -h(x, y, t> 

(2.36) 

Q2 - + T2(4 Y, t) 
\ Y 

z < -h(x,y,t). 

With the ansatz (2.36), (2.1-2) lead, without further approximation, to rather 
complicated, coupled equations for the four dependent variables +(x, y, t), h (x, y, t), 
T,(x, y, t) and T2(x,y, t). The dynamics (2.28,29) and (2.31,32) emerge as very 
special cases. For now, however, the challenge posed by the GTLE (2.17,19) seems 
sufficient, and the evidence suggests that the generalized two-layer equations might 
explain many observed features of the general ocean circulation. 

3. General solution of the ideal equations 

We begin our analysis of the GTLE by writing down their general, steady solution. 
Nothing better illustrates the power of the method of characteristics. Let &S/at = 0 
and rewrite (2.17, 19) in the form of potential vorticity equations, 

J(k sd + 4z1, qd Jhy) = 0 (3-l) 

and 

J(% q2) + ch qd J(qay) + cc&l, qd Jh, W = 0. (3.2) 

Here 

q1 = s and q2ES-H 
Y (3.3) 

are the “potential vorticities of the top and bottom layers,” 

c = 2%) - wl2) - (41 - q2W’h) + ~‘(qdl 
is the Rossby phase speed defined by (2.20), and 

Strictly speaking, q1 and q2 are the potential vorticities only in the special case (2.26) 
of the conventional two-layer equations, when, again defining h = y,S, (3.3) reduce to 
the familiar forms q1 = h/y and q2 = (h - H)/y. However, these quantities are also 
closely related to the values of the potential vorticity ye, at z = 0, -H (namely F”‘(S) 
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and F”‘(S - H/y) respectively), and it is easy to show that (3.1-2) express the 
constancy of ye, on particles moving along these boundaries. 

Now, (3.1-2) are also characteristic equations in which the qi play the role of 
Riemann invariants. Following Salmon (1992) and Ford (1992), there are two cases 
to consider. In the first case, 

and lines of constant ql, q2, and H/y all coincide. Then letting 

41 = G(4, where a-Hly 

so that 

q2 = G(a) - a, 

(3-V 

(3.8) 

we regard OL and y as new independent variables, and rewrite the characteristic 
equations (3.1-2) as equations for G(o) and +(cx, y), viz. 

a* 
G’(a) - -+ c = 0 [ 1 8Y 

and 

[G’(a) - l][- $ + c + a+] = 0. 

There are now two possibilities. Either 

G’(a) = 0 and a* --+c++(ycH=o 
ay 

(3.11) 

or 

G’(a) = 1 and -aJI+&). 
3Y 

By easy steps, these two alternatives lead to the two solutions 

q1 = S = Q, 

,=[2y~(Q,,-2yF(Q+~‘jel-~) (3.13) 

+(Ql -:)I +$!) 
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- HF’ (Q,) 
I 0 

+ R2 f 

where the Qi are arbitrary constants, and the Ri are arbitrary functions. The solutions 
(3.13) and (3.14) correspond to flows in which the upper- and lower-layer potential 
vorticities are (respectively) uniform. 

In the second case, 

% I ,  92) f  o 

W7Y) 
(3.15) 

and we can take q1 and q2 as new independent variables. In these coordinates, the 
characteristic equations (3.1-2) take the forms 

(3.16) 

and 

W aY dH -- -= 
a41 c a4, - cH aq* 

0. 

Noting that H = y(ql - q2), and eliminating $ between (3.16) and (3.17) we 
eventually obtain 

(3.18) 

with solution 

Y = cH(q; q2) Ifwl) + Wq2)l 
7 

where Ri and lRz are arbitrary functions. By use of (3.3) (3.19) determines S 
implicitly. Then solving (3.16-17) for $(ol,y), we obtain 

9 = ; pl(q1) + %(q2)1 + (41 - 42Plh) - fh(41) - fi2k2). (3.20) 
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In overall summary, the general steady solution of the ideal GTLE is (3.13), or (3.14), 
or (3.19-20). Solutions of the form (3.19-20) are of course generally multivalued; 
that is, depending on the functions a,( ) and &( ), (3.19) could be satisfied by 
several values of S. 

For the choices (2.26) and (2.30) of the profile function F( ), the general solution 
corresponds, respectively, to that found by Salmon (1992) and Ford (1992). Consid- 
ering the standard case (2.26) of uniform-temperature layers, S92 suggested that the 
flow along western continental slopes can be viewed as a composite of uniform- 
potential-vorticity solutions of the types (3.13) and (3.14), separated by a dissipative 
inner region required by matching. More specifically, the Gulf Stream corresponds to 
a region of uniform lower-layer potential vorticity, which is matched to an offshore 
region of uniform upper-layer potential vorticity by a frictional inner region contain- 
ing a strong southward flow. Both the northward transport of the Gulf Stream and 
the southward transport in this seaward countercurrent are significantly stronger 
than in the corresponding solution for homogeneous (i.e. single-layer) flow. Thus, 
topography and baroclinicity cause a large recirculation on the continental slope. 

These results extend easily to the GTLE. That is, following the same steps as in 
S92, we may show that the uniform-potential-vorticity solutions (3.13-14) can be 
matched only along H/y-lines at which $ must jump but S may not; that the jump in 4 
is caused by a jump in the JEBAR4 torque, J(y, l/H), in (2.17); and that the 
transition occurs in a frictional internal boundary layer with a significant southward 
transport. This generalization is significant because, although the conventional 
two-layer equations are difficult to solve numerically, the GTLE are not, and their 
numerical solution may help to determine whether solutions like those suggested by 
S92 actually occur as a part of fully self-consistent, whole-basin solutions. In 
particular, it is not necessary to regard the GTLE as an approximation to the 
conventional two-layer equations, because the GTLE are important in their own 
right, and, seemingly, everything that can be proved for the conventional equations 
can be proved directly for the GTLE. 

Of course, full-basin numerical solutions require wind- and thermal-forcing, and, 
as already remarked, (2.1-2) can satisfy boundary conditions of no-net-transport at 
coastal boundaries only if friction terms are also added to (2.1). In the following 
section, we show how dissipation and forcing can be added to the GTLE without 
cancelling their other advantages. Although the general, dissipative, planetary 
geostrophic equations (4.1-2) remain well-posed at the equator, y = 0, (where 
Darcy’s law replaces geostrophic balance) the prescribed temperature (2.4) has an 
undesirable singularity there, and we also propose a strategy for removing this 
singularity. 

4. “Joint Effect of Baroclinicity and Topography” 
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4. Forcing, dissipation, and the equator 

Consider now the nonconservative form of the planetary geostrophic equations, 

-fi = -& - EU -fvE 

fi4=-+y-Ev+fUE 

o=-+*+e (4-l) 

and 

u, + vy + w, = 0 

8, + ue, + ve, + we, = KV$3 (4.2) 

with the forcing and dissipation terms suggested by Salmon (1986,1990,1992). Here 
V3 = (a,, $, a,), E is a coefficient of Rayleigh friction in the horizontal direction, and 
K is the diffusion coefficient for temperature. The prescribed functions 

(UE, VE) = UE(T Y, 2) (4.3) 

represent horizontal body forces that model the input of wind momentum near the 
ocean surface; except near y = 0, we can regard uE as the Ekman-layer contribution 
to the horizontal velocity u. As shown in the previous papers, (4.1-2) are well-posed 
with respect to boundary conditions of no-normal-flow and prescribed temperature 
(or temperature flux), provided that the ocean depthH(x, y) vanishes smoothly at the 
coastline. If vertical sidewall boundaries are present, then the vertical momentum 
equation (4.1~) must also contain a Rayleigh friction term. 

The case for (4.1-2) has been made in the previous papers; see especially Salmon 
(1992). Briefly, Rayleigh friction is allowed because (4.1) omits the advection of 
momentum. Rayleigh friction is desirable because it leads to a relatively simple (and 
numerically resolvable) boundary-layer structure. The simple friction requires wind- 
forcing to‘ be the body-force represented by (4.3) rather than a prescribed surface 
stress. However, temperature diffusion is required, because temperature advection 
has been retained. 

To see that (4.1-2) are well-posed, suppose that all the variables are known at 
some time t. Then the temperature equation (4.2) and temperature boundary 
conditions determine 0 at the later time t + dt. To continue, we must determine the 
velocity field at t + dt. This velocity field is instantaneously determined by 0, the 
linear equations (4.1) and the no-normal-flow boundary conditions, as follows. First 
note that the continuity equation (4.ld) and the top- and bottom-boundary condi- 
tions (2.9) and (2.10) imply (2.13) and (2.14) as before. Then substitute the vertical 
integral of the horizontal momentum equations (4.la, b) into (2.14) and cross- 
differentiate to remove the pressure. The result is 

(4.4) 
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?(x, y) = - S_“,ze dz, (4.5) 

as before; 

is the wind-stress curl, and 

my) = v * (YGE) (4.6) 

1 0 
UE E - s H -H 

u, dz (4.7) 

i.e. the overbar denotes the vertical average. 
For given 0, IJ is uniquely determined by the elliptic equation (4.4) and the 

boundary condition + = 0 at coastlines. With + determined, the velocity field is given 
by 

u=(u,v)=~kxV*+u’ (4.8) 

and 

w= s ‘Vudz z 

where u’, the departure of the horizontal velocity from its vertical average, is 
determined by 

and 

S 0 
-Hu’ dz = 0. (4.11) 

As in the previous papers, we are interested in the case of very small E and K. If E is 
small, and if, as in the previous papers, the model ocean excludes the equator at y = 
0, then we can consistently replace (4.10) by the simpler equations 

au’ -= - 
3Z 

le -5, +auE 
yy y- az 

(4.12) 
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If, as in this paper, the model ocean includes the equator, we must use the more 
general form (4.10). However, if E is small, (4.10) and (4.12) differ only in an 
equatorial region of width E. 

Eq. (4.4) is the generalization of Stommel’s (1948) vorticity equation to include the 
bottom torque. The fact that the three-dimensional velocity is determined, through 
(4.4) by the temperature field 0(x, y, z) is an instance of the invertibility principle 
(Hoskins et al, 1985), which states that the potential vorticity field (and, typically, 
some ancillary information about the temperature field) determines the velocity 
field. In the case of the planetary geostrophic equations (4.1-2), the potential 
vorticity ~6, and the temperature 0 are very closely related, but the invertibility 
principle applies most simply to 0; for a given potential vorticity field, one would also 
need to know the temperature at one level (e.g. at the ocean surface or bottom) to 
obtain the velocity field (u, v, w). 

The temperature ansatz (2.4) contains a singularity at the equator. We therefore 
modify (2.4), assuming instead that 

where 

0 = F” ; + S(x, y, t) (4.13) 

Y= 4yq, (4.14) 

6 is a prescribed constant, and F” is an arbitrary function, as before. Outside an 
equatorial zone of width 6, the new ansatz (4.13) agrees with the old ansatz (2.4) and 
shares its special status. Near the equator, (4.13) has no special status but contains 
no singularity. I stress that the definition (4.14) is not an assumption about the 
dependence of the Coriolis parameter, y, on location; nor should the Y defined by 
(4.14) be viewed as a new coordinate. The ansatz (4.13-14) does impose the 
reasonable restriction that, upartfiom the effect of S, the temperature 0 be symmetric 
about the equator. However, S(x, y, t) need have no symmetry of any kind, and thus, 
although we consider below only completely symmetric temperatures and circula- 
tions, cross-equatorial symmetry is not required by (4.13). 

If the temperature takes the form (4.13), then (4.5) becomes 

(4.15) 

When W, E and 6 all vanish, (4.4, 15) reduce to (2.17-18). 
To obtain the generalization of the S-equation (2.19), we substitute our basic 

temperature ansatz (4.13) into (4.10) solve (4.10-11) for u, and then substitute the 
temperature (4.13) and velocity components (4.8-9) into the temperature equation 
(4.2). The resulting (rather complicated) equation cannot be satisfied at every (x, y, z) 
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for any +(x, y, t) or S(x, y, t). This is expected, because the ansatz (2.4) bore a special 
relationship to the ideal-fluid equations (2.1-2), and this relationship is destroyed by 
the forcing and dissipation terms, and by the modification required to remove the 
equatorial singularity. When forcing and dissipation are present (or when 6 f 0), 
only a single vertical moment of the temperature equation (4.2) can be required to 
vanish at every (x, y). That is, we must then project the forcing and dissipation onto 
the evolution equation for S, thereby admitting nonconservative effects only to an 
extent compatible with maintaining the prescribed structure (4.13) of the model. The 
significant point is that this structure is maintained exactly where nonconservative 
effects are unimportant, and outside the equatorial region of width 6. That is, apart 
from forcing, the solutions of the resulting equations are also solutions of the full 
three-dimensional equations (4.1-2), except (assuming E, K and 6 are small) in thin 
dissipative layers and near the equator. In the dissipative and equatorial regions, the 
equations have the status of an ordinary Galerkin approximation.5 

We will require that the vertical integral of the temperature equation (4.2) vanish, 
i.e. 

$ j-“, 0 dz + V * [ J-;uO dz] = V. [s_“, Kv8 dz] + Q 

where Q represents the surface heat flux (and we have assumed no heat flux into the 
ocean bottom). By our fundamental ansatz (4.13), the first term in (4.16) takes the 
form 

- 

f++g 

where 

(4.17) 

(4.18) 

and 

p = Y& - cl,) = Y(FF - F;;) 

and we have introduced a short-hand notation, 

(4.19) 

FT = F(S), F;- = F’(S), Fi = F” 

in which the subscripts T and B denote top and bottom, respectively. 

(4.20) 

5. More precisely, our projection corresponds to the “method of weighted residuals” because the 
projection-a vertical average of the temperature equation-is unrelated to the temperature representa- 
tion (4.13). 
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To develop the second term in (4.16) we first solve (4.8, 10-11) for the horizontal 
velocity components, 

1 
u=-gJy+ y& hGP,l - ~GPxl +r2u’E - ~~61 (4.21) 

and 

Here, G [r(z)] is defined as the solution to 

du 
s 

0 
- = r(z), 
dz 

+pdz = 0 (4.23) 

namely, 

G[r(z)] = s:Hr(z’) dz’ + kJ:Hzrr(zf) dz’ (4.24) 

and uk is the departure of the Ekman velocity from its vertical average. The first term 
on the right-hand sides of (4.21-22) represents the vertically-averaged horizontal 
velocity ii; the remaining terms represent u’. The corresponding contributions to the 
second term in (4.16) are 

(4.25) 

and 

V.[f#fIdz] =$[&(-yGy-sGx)] 

[ 

2 (yG” - EGY) 

I$* ~$fHfb~dz~ 

1 
-curl [&~~Hf3~:d~26) 

where, again using (4.13) 

(G”, Gy) = s_“, 0G[V0] dz = YJ-; (g , $ - $)(f3 - @2 dz. (4.27) 

We simplify the u&terms in (4.26) by assuming that uE is nonzero only within a thin 
layer near z = 0 in which the temperature is approximately equal to its surface value; 
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then 

s -“, f3uk dz = [0(x, y, 0) - 8]Hu,. 

Finally, the diffusion term in (4.16) takes the form 

V.[,J-;V%dz] =v-[K(~.os+oij)] 

(4.28) 

(4.29) 

where j is the northward unit vector, u is given by (4.19), and 

We substitute all these results back into (4.16) and group the terms so that the 
resulting equation resembles a weighted average of the characteristic equations 
(3.1-3) for potential vorticity (to which it must clearly reduce in the ideal-fluid limit, 
Q = uE = 0 = E = 6 = K). A year of experimentation has shown that this form of the 
S-equation is a particularly stable basis for numerical solution. The algebra is very 
tedious but straightforward. The final result is 

+ J(l), S) + LT(S, y) - VT. vs 
I 

(4.31) 

= V . [E(DVS + Ej)] + V * [K(FVS + aj)] + Q(x, y) + K(x,Y) 

Here, 

w, = ; (e, - G), 

are the weight factors, 

Y2 
E = yyy* + $) s 

0 2 

-H z(z + H)Oz dz = 
(y*l 2) [ 

2(Fr - FB) - ; (F; 

corresponds to the Rossby wave speed (3.4) 

-+ 

(4.32) 

Fb) (4.33) 1 
(4.34) 
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corresponds to (3.5) and 

(W + 2E2y2 - 62y2) 
s 

0 
c, = 

Y(y2 + ,2)2 
-H(e - q%iz (4.35) 

is small except near the equator, where it contributes an eastward propagation 
tendency to S. The terms containing 

(4.36) 

and 

vT = (1 - F;/ W,)v, (4.37) 

now carry the influence of uk on the temperature field. The diffusion coefficients on 
the right-hand side of (4.31) are defined by 

[M(S) - M(s - H/Y)] - y$$ e2 (4.38) 

and 

Y 
a E = - yyy2 + l ‘) s -H z(e - @2dz 

=y* WB-NT) +sw-MB) 
I 

where 

M(t) = s,” J”W2 dq, M-5) = s,’ qF’W2dq 

(4.39) 

(4.40) 

and u and (Y are defined by (4.19) and (4.30). Again, Q is the surface heat flux, and 
the baroclinic wind forcing is defined by 

Fqx,y) 2 (e, - 8) -v [ .($y+-I(g] (4.41) 

where curl denotes the vertical component of the curl (k . VX). In the limit of no 
forcing and dissipation, and 6 + 0, we see that E -+ c, EH + cH, c, --, 0, and the 
right-hand side of (4.31) vanishes along with vr and vs. In this limit, (4.31) reduces, as 
it must, to a weighted average of the characteristic equations (3.1-3). Note from 
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(4.32) that the “thinnest” layer receives the most weight in (4.31); the potential 
vorticity of the “thickest” layer is more strongly controlled by the depth-averaged 
equation, (4.4). 

Eqs. (4.4) and (4.31) are the nonconservative form of the GTLE, the generaliza- 
tions of (2.17, 19) to include forcing and dissipation and to accommodate an equator. 
We see that the forcing and dissipation terms in (4.1-2) lead to forcing and diffusion 
terms in (4.4,31), and that the b-modification (4.13) removes the singularity in (2.19) 
at y = 0. Indeed, whereas c and cH are both infinite at y = 0, E and EH both vanish 
there. The Rayleigh friction E and the temperature diffusion K both contribute 
diffusion terms to (4.31), but a close analysis shows that the K-terms are indispens- 
able, essentially because D vanishes faster than F as H + 0. 

As a check on (4.4) and (4.31), we write them out for the choice (2.26) of profile 
function corresponding to the conventional case of two homogeneous layers. In the 
cases where S and S - H/Y have the same sign, one of the layers fills the whole water 
column, and the JEBAR term in (4.4) vanishes, as do all the terms in (4.31). In the 
case where S > 0 and S - HIY < 0, the depth h = YS of the upper layer is between 0 
and H. By carefully evaluating all terms, we find that (4.4) and (4.31) reduce to 

and 

z+ +,jj +Jgh, ah J( “) ( ’ y&(l-;))=V+y&(l-;)Vh] 

+ Kv2h + Q/g’ - V 

Eqs. (4.42-43) are the same equations one would obtain by assuming, a prioi, the 
existence of two homogeneous, immiscible layers with Rayleigh friction E and forcing 
distributed uniformly with depth in the upper layer of thickness h. This limit provides 
an independent check on the nonconservative form of the GTLE and thus on the 
choice of vertical moment (4.16). 

Interestingly, the conventional two-layer equations (4.42-43) are well-posed with 
respect to boundary conditions of no-normal-flow at vertical sidewalls. The boundary 
conditions ti = 0 and 

ah Eah H- H- 
g’as+g’ydn=yhuE.n-EhnE’s (4.44) 

(where n is the outward unit normal, and s the counterclockwise-pointing unit 
tangent) guarantee that the normal flow vanishes in both layers. In the GTLE, no 
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single boundary condition can make the flow vanish at all depths, but the Galerkin- 
type boundary condition 

s 

0 
+0udz-n = 0 

reduces to (4.44) for the profile function (2,26) corresponding to two conventional 
layers. 

In this paper, we consider only geometries with vanishing depth, H = 0, at 
coastlines. Then, if 4 = 0 at the coastline, the normal advective flux is automatically 
zero there, but the requirement that the normal di$‘ksive flux also vanish imposes the 
boundary condition 

vs. n = 0. (4.46) 

In the following section, we briefly review some of the previous work with 
two-layerflat-bottom ocean models. Then in Section 6, we turn to numerical solutions 
of the GTLE, (4.4,31) in oceans with nonuniform depth. Because (4.4,31) are very 
much more complicated than (2.17, 19) there is now no hope of general analytical 
solution. However, it does at least seem likely that solutions of the GTLE are 
qualitatively insensitive to the precise form of the forcing and dissipation, so that one 
might replace the nonconservative terms in (4.31) by simpler terms of the same 
general character without losing any of the essential physics. Indeed, much of the 
interpretation in Sections 5 and 6 rests on the tacit assumption that the precise forms 
of the nonconservative terms are irrelevant. In this initial study, I nevertheless 
decided to follow the safer course of using nonconservative terms derived in the 
straightforward but somewhat laborious manner described above. 

5. Remarks on the flat-bottom case 

Although we consider only cases in which the ocean depth vanishes at the 
coastlines, most previous workers have considered model oceans with uniform depth. 
We therefore begin with a brief survey of the flat-bottom case. 

If H = 1, the +-equation (4.4) reduces to Stommel’s equation, 

4J 
z = W&y) - ev2* (5-l) 

and + is determined solely by the wind-stress curl, W, and is unaffected by 0. We may 
then regard I@, y) as prescribed, in the same sense as W(x, y). Then (4.31) becomes a 
quasilinear equation for S, which, in steady state, takes the form 
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where I&Y) is given, and the phase speed c < 0 is defined by (2.20-21). The 
left-hand side of (5.2) is the same as in (2.19), and the right-hand side of (5.2) 
contains all the nonconservative effects, i.e. all the terms by which (4.31) differs from 
(2.19). As suggested in Section 4, the forcing contribution to the right-hand side of 
(5.2) is important nearly everywhere, but the dissipation and equatorial modification 
terms are important only in localized regions. In the following discussion, we assume 
that much about the solution of (5.2) can be explained by the form of its left-hand 
side. 

It is useful to regard (5.2) as an “advection/diffusion” equation for S in which the 
advecting velocity field is given, in parametric form, by 

ah WJ 4 W -= -=- 
dt - s + ” dt ax (5.3) 

and t is now the parameter. The equations (5.3) define characteristics in the (LX, y) 
plane along which S changes according to 

dS 
z = nonconserv. (5.4) 

and the right-hand side of (5.4) is the same as (5.2). For small E and K, the diffusion 
terms in (5.4) are negligible except in narrow “inner regions,” so that the wind- and 
thermal forcing comprise the dominant contribution to the right-hand side of (5.4) 
almost everywhere. The sign of the diffusion terms is nevertheless essential; it 
determines the direction in which information flows along the characteristics (5.3). 
For diffusion terms like those in (4.31) information flows in the direction of 
increasing t as defined by (5.3) ( i.e. westward, if $ = 0). These facts form the basis for 
a qualitative theory of (5.2). 

Now,.if c is S-independent, then the characteristics defined by (5.3) are also 
independent of S, i.e. unaffected by the size of the temperature field swept along 
them. Consulting (2.21), we see that the only profile function (2.4) that leads to 
S-independent c is that corresponding to the uniform-potential-vorticity case (2.22), 
for which (still assuming H = 1) 

and the characteristic equations (5.3) integrate easily to 

1 H3 
IJJ - 12 Q y2 = const. 

(5.5) 

(5.6) 

For this case, the horizontally-varying component of the temperature, S, is deter- 
mined by an advection/diffusion eqution, (5.2), in which the advecting “velocity 
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field,” (5.3) corresponds to a “streamfunction” given by the (entire) left-hand side 
of (5.6). 

The qualitative nature of this solution is immediately clear. Suppose, for example, 
that the transport streamfunction has the form 

* = tjo sin [rr(y - yo)](l -x - e--X/E], o<y-yo<l (5.7) 

corresponding to the standard subtropical wind-gyre. The characteristic velocity 
(5.3) corresponding to (5.7) is then westward in the southern interior half-basin 
where both + and c contribute a westward component. This means that the tempera- 
ture field S is carried westward along characteristics from the eastern boundary 
(while of course gradually increasing because of the forcing terms on the right-hand 
side of (5.4)). H owever, in the northern half-basin, the characteristic velocity can be 
eastward, if the wind amplitude & is large enough to overcome c, whose size 
decreases rapidly with increasing y. In that case, S is swept eastward from the 
northern-most part of the western boundary, along characteristics that curve south- 
ward and then westward to intersect the western boundary again. At the bounding 
characteristic separating characteristics of western-boundary origin from those of 
eastern-boundary origin, S changes rapidly across characteristics, and diffusion 
becomes important. This region of rapid change is an internal boundary layer (but 
not a shock, because the characteristics (5.6) do not intersect). 

The whole discussion of the preceding paragraph is of course closely analogous to 
that first advanced in the classic papers of Rhines and Young (1982), Young and 
Rhines (1982) and Ierley and Young (1983). These authors considered two-layer 
quasigeostrophic dynamics, in which the analog of c is always constant. (de Szoeke 
(1985) has extended the quasigeostrophic theory to the case of a gently sloping 
bottom, assuming that the dissipation in the lower layer is very small.) In general, 
however, i.e. for profile functions other than (2.22), c depends on S, the characteris- 
tics (5.3) depend on the value of S swept along them, and shocks occur where the 
characteristics intersect, i.e. where conflicting information about S flows to the same 
point from different directions. 

Dewar (1987, 1991, 1992; see especially 1991) has emphasized the importance of 
shocks in the conventional two-layer model corresponding to the profile function 
(2.26-27), for which 

c = -g’h(H - h)ly2. (5.8) 

For general profile functions, the magnitude of c increases with S in the range of 
typical interest (e.g. in the range 0 < h = yS < H/2 for the conventional two-layer 
case). This means that the characteristic velocity (5.3) is more westward where the 
vertically-averaged temperature is greater, leading to the possibility of a shock 
separating colder water on the west (with eastward characteristic velocity) from 
warmer water on the east (with westward characteristic velocity). Such shocks 
replace the internal boundary layer of the uniform-potential-vorticity (or quasigeo- 
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strophic) case. The eastward increase of S (i.e. upper-layer depth in the conventional 
two-layer model) across the shock corresponds to a strong baroclinic current along 
the shock, northward near the ocean surface. A southward flow as depth exactly 
compensates this northward surface flow, because the depth-averaged flow ($) must, 
by (5.1) be smooth. These features were, I believe, first predicted in a theoretical 
analysis of the two-layer ocean by Kamenkovich and Reznik (1972), in which the 
shock coincided with the lower-layer outcrop line. In a very careful series of 
numerical experiments with the two-layer equations, Jarvis and Veronis (1994) have 
studied the structure of the shock, and the way in which the flow east of the shock is 
determined by conditions in the western boundary layer. They show that the shock 
need not coincide with the line of lower-layer outcrop in the two-layer model (a fact 
also evident from the perspective of the GTLE, where, for arbitrary temperature 
profile functions, even the definition of outcrop is quite fuzzy). The competition 
between $ and c, leading to the formation of shocks separating regions controlled by 
boundary conditions on opposite sides of the ocean has also been discussed by other 
workers; see, for example, Cushman-Roisin (1984) and Luyten and Stommel(1986). 

Although the interior flat-bottom equations are relatively simple, enabling a 
relatively simple interpretation of the interior solutions in terms of characteristics 
and shocks, the precise form of these solutions depends strongly on the values of S 
swept into the interior from the boundary layers along the coasts. As emphasized by 
Ierley and Young (1983) and Jarvis and Veronis (1994) these S-values are set by the 
complicated physics of the boundary layer, and the whole problem thus reduces to 
understanding the ways in which these boundary layers control the interior flow. 

The whole character of the circulation problem changes if the ocean depth 
vanishes at coastlines. The GTLE are then more complicated, but boundary layers 
exert much less control (or are absent altogether), because the topography steers the 
characteristics parallel to the coastlines. The complicated “boundary physics” then 
occurs away from coastlines, on the continental slopes, in better agreement with 
observations. Of course, the variable topography makes the GTLE much harder to 
interpret. Although (5.2) keeps its same form, the JEBAR term in (4.4) lets the 
temperature field feed back on $, which is then no longer solely determined by the 
wind. The S-dependence of $ means that (5.2) is no longer quasi-linear. This added 
complexity is the price of entertaining realistic topography, but there may also be a 
benefit: I strongly suspect that one reason for the slow progress in understanding 
flat-bottom ocean models may be the artificial sensitivity of the models to the 
unrealistic boundary layers at the vertical sidewalls. We now turn to numerical 
solutions of the GTLE without vertical sidewalls. 

6. Numerical solutions of the GTLE 

We begin by explaining the scaling of the fundamental nondimensional equations 
(4.1-2) which (4.4,31) inherit. Suppose that (4.1-2) have been obtained from their 
dimensional counterparts by scaling: (x, y) by L = 4000 km (the ocean basin width), z 
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by Ho = 4 km (a representative ocean depth), u and uE by U (a representative 
horizontal velocity), w  by H&/L, t by L/U, 4 by fOUL (where fO = 10m4 set-l), and 8 
byfOULIHO. We choose U = .2 km/day so that ULH, = 30 Sverdrups, the transport in 
the North Atlantic subtropical gyre; then the wind forcing is realistic if it produces a 
nondimensional transport streamfunction $ with a maximum value of order unity. 
The dimensional buoyancy is related to potential density by 

8 = - ; lo-%J@ 

where g is gravity and p. = 1 gm cm-3. Thus the observed range of 0 is about 
2 cm/sec2. Dividing by .02 cm2/sec, our buoyancy scale, we conclude that the 
nondimensional buoyancy range is about 100. This estimate affects the choice of 
temperature profile function. 

We consider a model ocean on 0 < x < 1,O < y < 2, with the bathymetry shown in 
Figure la. The ocean depth H&y) vanishes at the western (x = 0), eastern (X = l), 
and northern (y = 2) coastlines. (In all contour plots, darker contours correspond to 
larger values, and the zero contour is dashed.) The boundary conditions at the 
equator (y = 0) are complete cross-equatorial symmetry of the geometry, forcing 
and dynamics. To maximize the grid resolution in the regions of sloping bottom 
topography (which are of primary interest) the widths of the continental shelves have 
been greatly exaggerated; altogether they cover more than half the total area. 

The flow is driven by a prescribed eastward wind stress r(y). This stress corre- 
sponds to an infinite torque in water of vanishing depth unless frictional bottom 
torque is taken into account. (Recall that we view the e-friction as a true Rayleigh 
friction, and not a bottom drag.) We recognize the importance of bottom friction in 
shallow water by assuming that, in nondimensional depths less than (say) b, an 
increasing proportion of the surface stress is transmitted directly to the bottom by 
waves and other phenomena not contained in the model, and does not act to 
accelerate the flow. These ideas are expressed by the assumption 

where b is the nondimensional depth at which bottom stress becomes important. In 
all the solutions discussed b = .l (about 400 meters), and the zonal wind stress takes 
the double-gyre form 

2 1 7 = - sin* - 
IT i 1 2T (6.3) 

(6.4) 

or the triple-are form 

7 = --l/2 sin (ny) sin (‘/zny) . 
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Refer to Figure lc. In both cases, both $y) and its derivative vanish at the latitudinal 
boundaries y = 0, 2. The double-gyre wind (6.3) was selected for its simplicity. The 
triple-gyre wind (6.4) agrees better with observations (e.g. Hellerman and Rosen- 
stein, 1983). 

The nondimensional surface heat flux Q is related to the dimensional surface heat 
flux Qd by 

Q = gk PoGfdJ2 
Qd (6.5) 

where k is the coefficient of thermal expansion and C, the heat capacity of seawater. 
Observations show that Qd is of order +25 watt m-2 in mid-basin (but very noisy, and 
taking much larger values in localized regions) corresponding to a Q of order + 30. 
However, in many solutions I have taken Q = 0 (i.e. purely mechanical forcing.) 

Since the S-equation (4.31) originates from (4.16) the volume-integrated tempera- 
ture remains constant if Q integrates to zero. However, time-stepping experiments 
show that small numerical errors cause a steady, monotonic drift in the average 
temperature. To compensate for this drift, I have added a uniform heating per unit 
volume to the right-hand side of (4.31, 6.6) that is proportional to the difference 
between the total heat content of the ocean and a prescribed value. (More precisely, 
I prescribe the area-average of the upper-layer depth, (h).) At equilibrium, this 
uniform heating is very small, but it prevents the slow monotonic drift of tempera- 
ture. The need for such a device is especially clear in the limit of two homogeneous 
layers, in which many workers since Parsons (1969) have recognized the need to 
prescribe the total volume of the warm layer as an independent parameter of the 
problem. We shall see that (h) exerts a profound control on the equilibrium 
circulation through its influence on the Rossby phase speed c. 

In all the solutions presented, the resolution is 100 x 200 gridpoints, and the 
friction and diffusion coefficients have the values E = .015 and (with the single 
exception noted below) K = .l, the smallest values for which smooth solutions could 
be obtained in all cases. I solved the GTLE (4.4,31) by two distinct methods. In the 
first method, I stepped S forward in time using (4.31), and, at each time, calculated $ 
from (4.4) by a method of simultaneous relaxation around closed concentric circuits 
beginning with the circuit of gridpoints just inside the boundary. This time-stepping 
method always converged to steady flow, but only after tens of thousands of 
time-steps. In the second method, both (4.4) and the steady form of (4.31) were 
simultaneously relaxed (the latter using an AD1 method). To ensure a stable 
convergence, I rewrote (4.31) in the form 

v,~vs+v2~V(S-H/Y)=V~[(~+K~)VS+j(~+K~)]+Q+W, (6.6) 

(where vI and v2 collect many terms in (4.31)), and used Leonard’s (1984) third-order 
upwind differencing scheme for the terms on the left-hand side of (6.6). Leonard’s 
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Figure 1. (a) The ocean depth H(x, y), which ranges between zero at the coastlines and unity 
in mid-ocean. (b) The corresponding contours of H/y. (c) The zonal wind stress T(Y) for the 
two-gyre and three-gyre cases. (d) The temperature profile functions (6.8) and (6.14-15). 

scheme damps grid oscillations without the excessive numerical diffusion of first- 
order upwind differencing. For small E and K, (under-) relaxation coefficients as low 
as .1 were sometimes required, but the solutions still converged much faster than by 
time-stepping, in the order of thousands of relaxation steps. The best strategy is to 
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begin with relatively large values of E and K, relax the GTLE to equilibrium, reduce E 
and K, and then relax to the final equilibrium. In all the solutions described, I first 
solved the GTLE on a coarse grid of 50 x 100 points, and then transferred to the 
finer grid of 100 x 200 points for further relaxation at lower values of the friction and 
diffusion. 

We begin by briefly considering the solutions for homogeneous flow 8 = 0, for 
which the GTLE reduce to a single linear equation for the transport streamfunction, 

(6.7) 

As noted by Salmon (1992, Sec. 3) it is best to regard (6.7) as an advection/diffusion 
equation for the scalar IJJ in which y/H is the “streamfunction” of the advecting 
“velocity,” and -W is the “source.” Thus, for the bathymetry of Figure la, IJ is 
advected westward along “streamlines” (Fig. lb) that emanate from a single point on 
the eastern boundary at the equator, and converge to the equatorial point on the 
western boundary. If W is negligible near the boundaries, then, as E --+ 0, there are no 
boundary layers or internal boundary layers in the solutions of (6.7) and the 
e-diffusion in (6.7) is important only near the western equatorial point of conver- 
gence. 

Figure 2b and 2c show the solution of (6.7) for the wind curl corresponding to the 
double-gyre case (6.3) and the triple-gyre case (6.4) respectively. In Figures 2b-c we 
see how the $-values built up by wind torque in the flat-bottomed interior ocean are 
carried westward along y/H-lines toward the equatorial convergence point, yielding 
the pattern of western continental-slope currents and counter-currents discussed by 
Salmon (1992). These currents are controlled solely by y/H, and are asymptotically 
independent of E. The corresponding flat-bottomed (H = 1) solution, with its 
e-thickness western boundary layers (here corresponding to 1.5 grid-separation 
distances) is shown in Figure 2a. As emphasized by Kawase (1993) these equatorial- 
basin solutions differ significantly from the corresponding solutions in a non- 
equatorial basin with a southern coastal boundary, as E + 0. In the latter case, $ is 
swept around the closed contours of y/H, and its (nearly constant) value on each 
contour is determined by the very small diffusion across contours throughout the 
basin (see Batchelor (1956) and Rhines and Young (1983) for a discussion of this 
type of problem). However, southern coastal boundaries are unrealistic, and we 
consider only the equatorial case. 

We now consider a series of cases with non-uniform 8, corresponding to various 
values of the temperature profile function F” and prescribed average upper-layer 
thickness (h). Table 1 summarizes the solutions. Figure Id shows the profile 
functions. We begin with a solution (solution A) corresponding to the double-gyre 
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Figure 2. Homogeneous-flow solutions, 0 = 0. The transport streamfunction rj~ satisfying (6.7) 
with wind curl W corresponding to the two-gyre wind (a) in an ocean of uniform depth, H = 
1 (range: $ = -.783 to +.783); and (b) for the bathymetry in Figure la (range: -.386 to 
+.530). (c) The streamfunction corresponding to the bathymetry in Figure la and the 
three-gyre wind (range: -.486 to +.662). Darker contours correspond to larger values, and 
the zero contour is dashed. 

wind (6.3), no solar heating (Q = 0), (h) = .l, and the profile function 

F”(C) = 55 + son([) (6.8) 

corresponding to two (nearly) homogeneous layers with a relatively small uniform 
background stratification. The temperature jump between layers is 50, and h(c) is 
the smooth approximation to the Heaviside function defined by (2.35). Here, and in 

Table 1. Summary of solutions. 

Solution 

A 
B 
C 
D 
E 
F 
G 

gyres F” 

2 55 + 5WS) 
2 55 + 5ONE.) 
2 55 + 5WS) 
2 55 + 5WS) 
2 55 + 15@@(S) 
3 55 + (25 + lOOe)A(Q 
3 55 + (25 + lOO.$)A(<) 

W 
.l 
.l 
.05 
.15 
.15 
.l 
.l 

Ekman heat 
transport? 

yes 
no 
no 
no 
no 
no 
no 

Solar 
heating? 

no 
no 
no 
no 
no 
no 
yes 

K 

.l 

.l 

.l 

.l 
.l 
.l 
.15 
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Figure 3. The (a) transport streamfunction (range: - S74 to + .883); (b) surface temperature 
(9.29 to 51.8); and (c) characteristic velocity v, in solution A. The arrows in (c) have been 
normalized to have the same length. 

all the solutions presented, I have taken d = .05 in (2.35) and 6 = 5 in (4.14). Thus 
the equatorial adjustment (4.13) to (1.1) is significant only in the southernmost 
quarter-basin. 

Figure 3a shows the transport streamfunction $ in solution A. The difference 
between Figures 2b and 3a is caused solely by the JEBAR-term in (4.4), but is quite 
significant; the total transport in Figure 3a is about 50% greater than that in Figure 
2b. Now, rewrite (4.4) as 

1*,$- =$J(H,y)+w-v. $v* i i i 1 
and define the JEBAR torque 

J = j$ J(H, 7). (6.10) 

Wherever HY = 0 (i.e. except near the northern boundary), this is 

(6.11) 
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which as H -+ 0 becomes 

J = ‘h H#,. (6.12) 

The limit (6.12) is useful for estimation. From either (6.11) or (6.12) we see that on 
the western continental slope, where H, > 0, J has the same sign as 8,. Calculations 
(not presented) show that the biggest J-values are negative and occur where the Gulf 
Stream leaves the continental slope. There, the large positive value of H, combines 
with very large negative values of 0, to yield a negative torque whose extremum 
coincides with the sharp curve in ~JJ near the western boundary, between gyres 
(Fig. 3a.) 

Figure 3c shows the characteristic velocity in the S-equation (6.6), defined by 

v, = V’ + v2 

= (W, + WJ[(-$, 44 + t& (91 + fYG%W.y7 -K) + (G, 0) + Ekman 
(6.13) 

where Ekman stands for the terms representing the effect of the Ekman transport on 
the vertically-averaged temperature (the vr and vB terms in (4.31)), and all the other 
terms have been defined in Section 4. In Figure 3c, each vector has been normalized 
to the same length, to give the clearest possible indication of the direction in which 
S-information flows. The first three terms in (6.13) correspond to the advection of S 
by the depth-averaged flow, the westward propagation of S at the internal Rossby 
wave speed, and the propagation of S along isobaths, in the direction of topographic 
Rossby waves. The c,-term is insignificant, except at the equator. The Ekman 
transport term is significant, and is responsible for the large southward component of 
v, at northern mid-basin in Figure 3c. Figure 3c also shows a shock at the boundary 
between gyres, where these Ekman-dominated southward characteristic velocities in 
the subpolar gyre converge with the Rossby-dominated westward characteristic 
velocities in the subtropical gyre. The shock coincides with the outcrop of the main 
thermocline (Fig. 3b) and the paths of the separated western boundary current 
(Fig. 4a) and deep countercurrent (Fig. 4b).(j The large upper-layer thickness south 
of the shock (see Fig. 8A) causes the Rossby speed c to be large there, leading to the 
westward characteristic velocities that contribute to the shock. 

A second shock, trending north-northeast and perhaps following a line of constant 
H/y, is apparently present on the southwestern continental slope (Fig. 3c), where 
southward characteristic velocities bringing cold water from far north converge with 
the northward characteristic velocities in the Gulf Stream. This western-continental- 
slope shock ends abruptly at a point coincident with the tiny inflection in the warmest 
contour of Figure 3b, and is more apparent in the corresponding map of S (Fig. 10a). 

6. In Figure 4 (and in all other maps of the horizontal velocity), the length of the arrows is proportional 
to the square root of the fluid speed, to keep the high-velocity arrows from dominating the picture. Arrows 
are drawn for only one sirteenth of the model gridpoints. 
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Figure 4. The horizontal velocity in solution A, (a) at the ocean surface (maximum velocity 
679., rms = 42.8); and (b) at the ocean bottom (maximum = 11.6, rtns = 3.74), in water 
deeper than .75. The length of each vector is proportional to the square root of the fluid 
speed. Velocities are in units of .2 km/day. 

It appears in all of the solutions presented below. In contrast, the existence of the 
mid-ocean shock depends sensitively on the prescribed thermal structure (princi- 
pally, on the prescribed volume of warm water). As we shall see, in none of the 
solutions in which both shocks are present do these two shocks connect; there is 
always a region between the shocks in which the characteristic velocity varies 
smoothly, and temperature flows freely between the gyres. This gap between the 
shocks coincides with the region in which the Gulf Stream flows down the continental 
slope. 

The Ekman terms in (4.31) probably over-estimate the importance of Ekman heat 
transport. For example, if the Ekman layer transports cold surface water southward 
over warmer water at depth (as in solution A), then the resulting vertical mixing 
would reduce the net horizontal heat transport well below that estimated by (4.28). 
Figure 5 shows the surface temperature, characteristic velocity v,, and surface 
velocity in solution B, which differs from A only in that the Ekman heat-transport 
terms have been dropped from (4.31) and (6.13). From Figure 5b, we see that the 
mid-ocean shock has disappeared, and the characteristic velocity is westward over 
nearly the whole interior ocean. There is no rapid mid-ocean change in the surface 
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Figure 5. The (a) surface temperature (range: 7.24 to 51.7); (b) normalized characteristic 
velocity v,; and (c) surface velocity (maximum = 673., rms = 41.5) in solution B, which 
differs from A only in the neglect of Ekman heat transport. 

temperature (Fig. 5a), and the westward drift is correspondingly diffuse (Fig. 5~). All 
the remaining solutions omit the Ekman heat transport. 

We next consider solutions with the same two-gyre wind stress (6.3) and two- 
homogeneous-layers profile function (6.8) but with different prescribed values of the 
average upper-layer thickness (h). Solution C differs from B only in its lower 
prescribed upper-layer thickness, (h) = .05, but the differences in the temperature 
and velocity fields are dramatic. The smaller volume of warm water reduces the 
Rossby speed c, especially in the subpolar gyre, where the characteristic velocity is 
eastward and dominated by JI (Fig. 6b). The main thermocline outcrops sharply at a 
mid-ocean shock (Fig. 6a). South of the outcrop, the relatively large upper-layer 
thickness causes the characteristic velocities to be westward. The surface velocity 
(not shown) is similar to that in solution A, and the bottom velocity (Fig. 6c) has a 
strong component parallel to the shock. Solution C, with its isolated, southward 
western boundary current in the subpolar gyre, closely resembles the theoretical 
model of Veronis (1973). Temperature sections (Fig. 9) reveal the warm water 
flowing northward along the eastern boundary, westward along the northern bound- 
ary (Fig. SC), and southward along the western boundary. 

Solution D differs from B and C only in its much larger (h) = .15. Now, however, 
the Rossby speed c completely dominates the characteristic velocity, which is 
westward throughout the mid-ocean (Fig. 7b). The area of cold-water outcrop is 
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Figure 6. The (a) surface temperature (range: -5.52 to 51.3); (b) normalized v,; and (c) 
horizontal velocity at the ocean bottom (maximum = 10.0, rms = 2.53) in solution C, which 
differs from A and B in its lower prescribed average upper-layer depth (h) = .05. 

swept westward (Fig. 7a) and greatly diminished, and the abyssal flow is eastward 
nearly everywhere (Fig. 7~). 

Do these numerical solutions resemble the analytical solution for two-layer flow 
along a western continental slope offered by S92? Figure 10 shows the upper-layer 
potential vorticity q1 = S and lower-layer potential vorticity q2 = S - H/Y in solution 
A. (Note that the definition of potential vorticity is here modified slightly, by 
replacing y with Y.) As predicted in S92, a line of constant H/y separates a shoreward 
region of uniform q2, in which qI changes rapidly, from a region of relatively uniform 
ql, in which q2 changes rapidly. However, the Rayleigh friction E is too large to make a 
really meaningful comparison; for E = .015, the predicted c1’2-thickness internal 
boundary layer separating the two regions has a thickness (.12) comparable to the 
width of the continental slope. Thus the numerical calculations are far from the 
asymptotic limit E + 0 considered in the previous paper. In fact, the solutions shown 
here with 100 x 200 resolution differ significantly from corresponding solutions on 
the 50 x 100 grid (and with slightly larger values of E and K), offering further evidence 
that the numerical solutions are far outside the asymptotic regime. Unfortunately, 
the numerical solutions diverged for E less than a grid distance, indicating that 
unresolved E-thickness boundary layers are a problem even when they are not 
required by the particular forcing and basin geometry under consideration. As noted 
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Figure 7. The same as Figure 6, but for solution D, in which (h) = .15. (a) Surface temperature 
(42.5 to 52.2); (b) normalized v,; (c) bottom velocity (maximum = 6.2, rms = 1.7). 

by Jarvis and Veronis (1994) the mid-ocean shocks also have a thickness ~i/~. This is 
in contrast to Parson’s (1969) calculation, in which the lower layer is quiescent, the 
upper layer carries the full Sverdrup transport, and the separated western boundary 
layer has thickness E. 

Next we examine a solution (solution E) with the profile function 

F”(F;) = 55 + 150~A(EJ (6.14) 

corresponding to a jump in Cl,, but not 0, at the thermocline 5 = 0. See Figure 8E. 
Figure 11 shows the transport streamfunction and surface temperature. Because 
there is no vertical jump in temperature, the characteristic velocity (not shown) 
varies smoothly, and no mid-ocean shocks occur. 

Our last two solutions (F and G) use the more realistic three-gyre wind (6.4), and 
the profile function 

F”‘(k) = 55 + (25 + lOOe)R(<) (6.15) 

corresponding to a jump in both temperature 0 and stratification 0, at the thermo- 
cline. In both solutions, the prescribed upper-layer thickness is (h) = .l. In solution 
F, as in all previous solutions, the surface heat flux vanishes (Q = 0). In solution G, 
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Figure 8. The temperature in a north-south section from the equator (left) to the northern 
boundary in each of the numerical solutions, A through G. The base of the main 
thermocline corresponds to zero temperature, and the temperature ranges are: (A) tl = 
-8.29 to +51.7; (B) -8.29 to +51.7; (C) -8.71 to +X.3; (D) -7.88 to +52.1; (E) -7.99 to 
+62.0; (F) -8.80 to +50.1; (G) -9.39 to +57.9. 

however, 

Q = 3o&os ;y 
i i 

corresponding to net heating in the southern half-basin and net cooling in the north. 
Analysis of (4.31) shows that Q must vanish as H * 0; that is, horizontal heat fluxes 

Figure 9. The temperature in east-west sections in solution C at (a)y = .5 (temperature range: 
-6.1 to 51.1); (b)y = .75 (-5.1 to 50.6); and (c)y = 1.5 (-8.5 to 46.6). 
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Figure 10. The (a) upper-layer potential vorticity S; and (b) lower-layer potential vorticity S - 
H/Y in solution A. 

cannot balance a net surface flux in water of vanishing depth. The quotient in (6.16) 
expresses the idea that the various contributors to the net surface flux achieve a local 
balance as the ocean depth decreases past b = .l. This assumption is obviously quite 
arbitrary. 

With the nonvanishing surface flux (6.16) and K = .l (as in solutions A through F), 
the numerical solutions diverged. However, the solution converged for K = .15. Thus 
solution G differs from F only in its heat flux (6.16), and its larger value of 
temperature diffusivity. However, the differences in the flow are quite dramatic. In 
solution F, predominantly westward characteristic velocities (not shown) press the 
warm water against the western coast (Fig. 12). In solution G, the strongly eastward 
characteristic velocities in the colder subpolar gyre create a shock (Fig. 13) resem- 
bling that in solution C. The surface velocity (Fig. 14a) separates sharply from the 
western slope, but the eastward drift is relatively difise. The deep flow is westward 
on both flanks of the North Atlantic Current (Fig. 14b). 

7. Remarks 
The planetary geostrophic equations (PGE), (4.1-2) with boundary conditions of 

no-normal-flow and prescribed heat flux, are the simplest conceivable “balanced” 
dynamics-simpler even than the quasigeostrophic equations in that the PGE 
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Figure 11. The (a) transport streamfunction (range - .457 to .930); and (b) surface tempera- 
ture (.05 to 62.6) in solution E. 

entirely omit all three components of the inertia. However, the PGE are superior to 
the quasigeostrophic equations in that they are not restricted to flows which remain 
near a prescribed rest state with nearly flat isopycnals, or to ocean basins with a 
nearly flat bottom. In contrast to the quasigeostrophic equations and other, more 
sophistieated balanced approximations, the PGE cannot satisfy no-normal-flow 
boundary conditions in the absence of friction. But the friction is really only required 
at vertical sidewalls, or along the coastal boundary of vanishing depth in an ocean 
with non-vertical boundaries. (Of course, as in all models, dissipation is also required 
to prevent advection from building up infinitely large gradients of temperature as 
time increases.) 

Numerical experiments suggest that (at least in parameter ranges of practical 
interest) the PGE approach a steady state. This fact greatly simplifies the analysis of 
solutions, and it justifies the first of two assumptions used here to reduce the number 
of independent variables from four to two. The other assumption, (l.l), is much 
more questionable, but it is more general and convenient than the common assump- 
tion of two homogeneous layers, and many workers have noted a tendency for the 
potential vorticity to be uniform on isopycnal surfaces. Indeed, the iso-lines on 
meridional hydrographic sections often resemble rays emanating from a “point” on 
the equator, as required by (1.1). 
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Figure 12. The (a) transport streamfunction (range -.735 to +l.lO); and (b) surface 
temperature (2.42 to 50.6) in solution F. 

Of course, a theory based upon the assumption of uniform potential vorticity can 
hardly explain why the potential vorticity tends to be uniform. Neither can the 
generalized two-layer equations (GTLE), in which the vertical profile of temperature 
is severely constrained by the choice of profile function O( ), explain the existence of 
the main thermocline, the midwater layer in which the temperature and its derivative 
change rapidly. Stommel and Webster (1962) Young and Ierley (1986) and Salmon 
(1990) have suggested that the main thermocline is an internal boundary layer in 
solutions of the full, three-dimensional PGE, and Salmon and Hollerbach (1991, Sec. 
8) give analytical solutions, containing internal boundary layers, in which the flow 
resembles that in subtropical gyres. But although these studies offer theoretical 
justification for a profile function with a relatively sharp jump, one can seriously 
question whether it really makes sense to presctibe such an important feature of the 
physics. 

Solutions of the full, three-dimensional PGE also reveal the formation of large 
regions of static instability, unless an explicit vertical convective mixing is imposed. 
This seems to be a property of all balanced dynamical approximations in which the 
vertical derivative of density is free to change sign (including even the primitive 
equations, in which the only balance is hydrostatic), but the problem seems especially 
acute for the PGE. Numerical experiments (Zhang et al., 1992) show that, without a 
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Figure 13. The (a) transport streamfunction 
temperature (-6.55 to +58.1) in solution G. 

(range -.992 to +1.06); and (b) surface 

convective adjustment, the warmest water can fill up the deep ocean. The GTLE 
avoid the need for a convective adjustment by using a statically stable profile 
function, thereby “projecting out” the physics leading to static instability, but, again, 
one can question the physical justification for this approach (although it is not 
obviously more arbitrary than the convective adjustment imposed on primitive 
equation models). 

The primary reason for studying the PGE, and the GTLE in particular, is that their 
mathematical simplicity offers great hope for physical understanding. The general 
analytical solutions in Section 3 are a particularly encouraging hint of what might 
eventually be possible. Moreover, I suspect that the complicated topography of the 
ocean basins may be exerting a strong but very non-local control on the time-average 
flow, and that it is more important to model this topographical control accurately 
than it is to take account of the inertia. 

Although the numerical solutions described in Section 6 offer some encourage- 
ment, real physical understanding likely demands consideration of the asymptotic 
limit of small dissipation, and as already conceded, the numerical solutions lie far 
outside this asymptotic regime. The fundamental difficulty seems to be the disparity 
in the boundary layer thicknesses, E and l 1l2, as E + 0. Jarvis and Veronis (1994) 
recognized this difficulty and overcame it with a much finer grid resolution near the 
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Figure 14. The horizontal velocity (a) at the surface (maximum = 198., rms = 26.6); and (b) 
at the ocean bottom in water deeper than .75 (maximum = 7.3, rms = 2.0) in solution G. 

boundaries, but their method may not apply easily to the case of realistic coastline 
geometry. However, in their ideal form (2.17, 19), the GTLE are “non-metric”; that 
is, they contain only Jacobian derivatives. This may make it possible to solve the 
GTLE on a non-orthogonal grid using the natural variables H and y as new 
independent variables, particularly if the dissipation terms in (4.4,4.31) could be 
replaced by dissipation terms taking a simpler form in the new coordinates, or- 
better yet-if the equations could then be solved entirely without dissipation and the 
resulting multivalued-ness resolved by jump conditions in the usual manner of 
obtaining weak solutions. The use of ocean depth H as an independent variable 
would make it much easier to accommodate real bathymetry, and would naturally 
concentrate numerical resolution in regions of steeply sloping topography, where 
observations typically reveal strong, narrow currents. I speculate that the use of 
realistic bathymetry and smaller (or no) dissipation will dramatically improve the 
resemblance between numerical solutions of the GTLE and oceanographic observa- 
tions. Ultimately, it will certainly be necessary to consider PGE models with more 
than two vertical degrees of freedom, but the simplicity of the GTLE should first be 
fully exploited. This simplicity, and the hope it offers for a completely deductive 
theory, are the primary advantages of the GTLE. 
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