
An Ocean Circulation Model Based on Operator-Splitting, Hamiltonian Brackets,
and the Inclusion of Sound Waves

RICK SALMON

Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

(Manuscript received 28 August 2008, in final form 30 January 2009)

ABSTRACT

This paper offers a simple, entirely prognostic, ocean circulation model based on the separation of the

complete dynamics, including sound waves, into elementary Poisson brackets. For example, one bracket

corresponds to the propagation of sound waves in a single direction. Other brackets correspond to the

rotation of the velocity vector by individual components of the vorticity and to the action of buoyancy force.

The dynamics is solved by Strang splitting of the brackets. Key features of the method are the assumption

that the sound waves propagate exactly one grid distance in a time step and the use of Riemann invariants to

solve the sound-wave dynamics exactly. In these features the method resembles the lattice Boltzmann

method, but the flexibility of more conventional methods is retained. As in the lattice Boltzmann method,

very short time steps are required to prevent unrealistically strong coupling between the sound waves and the

slow hydrodynamic motions of primary interest. However, the disadvantage of small time steps is more than

compensated by the model’s extreme simplicity, even in the presence of very complicated boundaries, and by

its massively parallel form. Numerical tests and examples illustrate the practicality of the method.

1. Introduction

This paper offers a simple, completely prognostic,

numerical ocean circulation model based on the full

equations of fluid dynamics, including sound waves.

Simplicity is achieved by splitting the dynamics into a

sequence of elementary steps. For example, one step

corresponds to the propagation of sound waves in, say,

the x direction. Another step corresponds to the action of

Coriolis force. Each step corresponds to a Hamiltonian

bracket; hence, important conservation laws survive.

Because themodel dynamics includes sound waves, there

is no need to solve any elliptic boundary value problems.

All dependent variables step forward in time. This greatly

facilitates the coding, especially in complicated geometry.

In fact, the complete model comprises a relatively large

number of very short subroutines, which because of di-

rectional splitting, are actually indifferent to the com-

plexity of the ocean basin shape.

The sound speed is an adjustable parameter of the

model and need not be as large as the actual sound

speed. The only general requirement is that the Mach

number be small compared to unity. In rotating flow,

the acoustic deformation radius, c/f (sound speed di-

vided by Coriolis parameter), must be larger than the

domain size. In stratified flow, the scale depth, c/N

(sound speed divided by Väisälä frequency), must be

larger than the ocean depth. By choosing the time step

to be the gridpoint separation divided by the sound

speed, we solve the ‘‘sound-wave split’’ exactly, using

the method of Riemann invariants. Thus, small time

steps correspond to large sound speed and to realisti-

cally incompressible flow.

Two earlier papers (Salmon 1999a,b) entertained the

idea of solving ocean circulation models using the lattice

Boltzmann method. Unfortunately, subsequent attempts

to apply the lattice Boltzmann method to ocean basins

with realistic bathymetry failed for reasons connected

with the inflexibility of the method and with the highly

anisotropic nature of ocean dynamics—the huge dis-

similarity between leading-order dynamical balances in

the horizontal and vertical directions. At the same time,

more recent work (Salmon 2004, 2005, 2007) has re-

emphasized the importance of retaining conservation

laws in numerical algorithms. The present method,

which attempts to combine the advantages of the lattice
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Boltzmann method with the need to maintain conser-

vation laws, represents a marriage of these two philos-

ophies. In the lattice Boltzmann method, fluid particles

hop from one grid point to the next in a time step. In the

method of this paper, Riemann invariants propagate ex-

actly one grid distance in a time step. However, whereas

lattice Boltzmann particles relax irreversibly (and hence

diffusively) toward a local equilibrium state that repre-

sents the entire dynamics, our propagation of Riemann

invariants is but one component—one split—of the

complete dynamics. We solve each of the splits by an

algorithm that is designed especially for that split and

maintains as many conservation laws as possible.

No matter what the method, viscosity and diffusion

must be present to represent subgrid-scale physics. How-

ever, the viscous and diffusive splits should not affect the

conservative nature of the others. Unlike in the lattice

Boltzmann method—or, for that matter, the more widely

used ‘‘semi-Lagrangian’’ advection schemes—our viscos-

ity and diffusion are independent, separately controllable,

components of the whole dynamics.

The plan of the paper is as follows: Section 2 intro-

duces the basic physics in Hamiltonian form and ex-

plains the fundamental analytical approximation, a

modification of the Hamiltonian that simplifies the dy-

namics but still accurately corresponds to the Boussinesq

equations in the limit c / ‘ of infinite sound speed.

Since we make no approximation to the Poisson bracket,

the analytical equations preserve all the exact conserva-

tion laws. A partition of the Poisson bracket into three

parts produces rotation subdynamics, sound-wave sub-

dyamics, and buoyancy subdynamics. Each of these

subdynamics is applied separately to the flow using

Strang splitting. We solve the sound-wave subdynamics

(section 3) by directional splitting and the use of

Riemann invariants. Buoyancy subdynamics (section 4)

also uses directional splitting, with the precise formu-

lation selected for its compatibility with the sound-wave

subdynamics and with the conservation of mass, buoy-

ancy, and buoyancy squared. The latter may be espe-

cially important because it, along with total energy

conservation, guarantees the conservation of the sum of

kinetic, internal, and available potential energy. Rota-

tion subdynamics (section 5) does not use directional

splitting but instead splits the v 3 v term into pieces

proportional to the three components of the vorticityv.

Section 6 compares solutions of our model in two hor-

izontal dimensions to solutions obtained using more

conventional methods.

All ocean circulation models face fundamental diffi-

culties associated with the huge disparity between the

horizontal and vertical spatial resolution. Section 7 ex-

plains how one solution to this problem—the ‘‘aspect

ratio trick’’ proposed by Browning et al. (1990)—is

ideally suited to the present method; it corresponds to

an adjustment to the sound speed that equates the time

required for sound waves to propagate a vertical grid

distance to the time required to propagate a horizontal

grid distance. Section 8 presents solutions of ocean

convection over realistic topography that incorporate

this aspect-ratio trick. Section 9 concludes.

2. Analytical approximations

We begin with the perfect-fluid equations in the form

›v

›t
5 v 3 v) $

1

2
v ' v1 c2r/r

0

1 0
1 uk, (2.1a)

›r

›t
5)$ ' (rv), (2.1b)

and

›u

›t
5)v ' $u, (2.1c)

where v is the fluid velocity;v5 $3 v1 2V is the total

vorticity, including the earth’s rotation vectorV; r is the

mass density with representative constant value r0; c is

the sound speed (a prescribed constant); and u is the

buoyancy, which could be further subdivided into tem-

perature and salinity. The ‘‘exact’’ dynamics (2.1) are

equivalent to the Hamiltonian bracket formulation,

dF

dt
5 F,H

e

) 2
, (2.2)

where F 5 F[v, r, u] is any functional of the variables

v(x, y, z, t), r(x, y, z, t), and u(x, y, z, t); {F, He} is the

Poisson bracket defined by

F,H
e

) 2
5

ððð
dx

v

r
' dF

dv
3

dH
e

dv

1 0
1

ððð
dx $

dF

dr
' dHe

dv
) $

dH
e

dr
' dF
dv

1 0
1

ððð
dx

$u
r

' dF

dv

dH
e

du
) dH

e

dv

dF

du

1 0
(2.3)

and

H
e
5

ððð
dx

1

2
rv ' v1 1

2

c2

r
0

r2 ) ruz

1 0
(2.4)

is the exact Hamiltonian. By successively setting F 5
v(x0), r(x0), u(x0), where x0 is an arbitrary fixed location,

and making use of the functional derivatives
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dH
e

dv
5 rv;

dH
e

dr
5

1

2
v ' v1 c2r/r

0
) uz;

dH
e

du
5)rz,

(2.5)

we recover the exact dynamics (2.1). Strictly speaking,

the bracket (2.3) applies only to unbounded flow; the in-

corporation of boundary conditions into Poisson brackets

is problematic. However, we use (2.3) only to infer the

governing finite-difference equations within the fluid

interior. We infer the corresponding boundary condi-

tions by requiring that the appropriate fluxes vanish at

boundaries.

Now we introduce approximations, both analytical

and numerical, to the Poisson bracket (2.3) and the

Hamiltonian (2.4). Our single analytical approximation

will be to replace the exact Hamiltonian He by

H5

ððð
dx

1

2
r
0
v ' v1 1

2

c2

r
0

r2 ) ruz

1 0
(2.6)

in which the constant average density replaces the den-

sity factor in the kinetic-energy term. We make no an-

alytical approximations to the bracket. Since now

dH

dv
5 r

0
v;

dH

dr
5 c2r/r

0
) uz;

dH

du
5)rz,

(2.7)

we obtain the approximate dynamics

›v

›t
5

r
0

r
v 3 v) $(c2r/r

0
)1 uk, (2.8a)

›r

›t
5)$ ' (r

0
v), (2.8b)

and

›u

›t
5)r

0

r
v ' $u. (2.8c)

The advantage of (2.6) over (2.4) is that it leads to

Eqs. (2.8), in which the sound waves move at an abso-

lutely constant speed. This makes it possible to solve the

sound-wave split exactly. In the limit c/‘ of interest,

both the exact dynamics (2.1) and the approximate

dynamics (2.8) reduce to the Boussinesq equations,

despite the difference between (2.1a) and (2.8a).

To pave the way for numerical approximations, we

introduce the new variables

f[ c2
r

r
0

; a[
r

r
0

u (2.9)

and transform the variables from (v, r, u) to (v, f, a).

The functional derivatives transform as

dF

dv
5

dF

dv
;

dF

dr
5

c2

r
0

dF

df
1

a

f

dF

da

1 0
;

dF

du
5

f

c2
dF

da
.

(2.10)

Hence, (2.3) and (2.6) take the forms

dF

dt
5 F,Hf g1 1 F,Hf g2 1 F,Hf g3, (2.11)

where

F,Hf g1 5
ððð

dx
c2

f
v ' dF

dv
3

dH

dv

1 0
, (2.12a)

F,Hf g2 5 c2
ððð

dx $
dF

df
' dH
dv

) $
dH

df
' dF
dv

1 0
,

(2.12b)

F,Hf g
3
5 c2

ððð
dx

a

f
$
dF

da
' dH
dv

) $
dH

da
' dF
dv

1 0
,

(2.12c)

and

H5

ððð
dx

1

2
v ' v1 1

2

f2

c2
) az

1 0
. (2.13)

(Note that a factor of r0 has been cancelled between the

brackets and the Hamiltonian.) The advantage of the

transformation (2.9) is that (2.12c) takes a simpler form

than the last term in (2.3).

The three brackets in (2.12) correspond, respectively,

to the rotation subdynamics

›v

›t
5 v,Hf g

1
5

c2

f
v 3 v, (2.14a)

›f

›t
5 f,Hf g1 5 0, (2.14b)

›a

›t
5 a,Hf g

1
5 0; (2.14c)

the sound-wave subdynamics

›v

›t
5 v,Hf g2 5)$f, (2.15a)

›f

›t
5 f,Hf g

2
5)c2$ ' v, (2.15b)

›a

›t
5 a,Hf g2 5 0; (2.15c)
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and the buoyancy subdynamics

›v

›t
5 v,Hf g

3
5 c2

a

f
k5 uk, (2.16a)

›f

›t
5 f,Hf g

3
5 0, (2.16b)

›a

›t
5 a,Hf g

3
5)c2$ ' a

f
v

1 0
5)$ ' (vu).

(2.16c)

We obtain approximate dynamics equivalent to (2.8) by

summing up the terms on the rhs of (2.14), (2.15), and

(2.16). However, we solve the dynamics (2.14)–(2.16) by

applying each of the three subdynamics, (2.14), (2.15),

and (2.16) successively, at each time step. In fact, we

further split each subdynamics into its directional or

vorticity components, as described in following sections.

In the limit c/‘, both the exact dynamics (2.1) and

approximate dynamics (2.14)–(2.16) reduce to the

Boussinesq equations

›v

›t
5 v 3 v) $f1 uk, (2.17a)

$ ' v5 0, (2.17b)

›u

›t
5)v '$u (2.17c)

for incompressible flow. Thus, our entire procedure is

merely a device for solving (2.17).

We replace each subdynamics by finite-difference

analogs that maintain as many conservation laws as

possible. The energy (2.13) is conserved or semicon-

served as long as the spatial discretization maintains

the antisymmetry property of each of the brackets in

(2.12). By ‘‘semiconservation,’’ we mean conservation

except for errors in the discretization of the time de-

rivative. Besides the energy, we also wish to conserve

the mass

M5

ððð
dxf}

ððð
dx r, (2.18)

the buoyancy

B5

ððð
dxa}

ððð
dx ru, (2.19)

and the squared buoyancy

Z5
1

2

ððð
dx

a2

f
}

ððð
dx ru2. (2.20)

Additional conserved quantities include the momentum

(disregarding the effects of solid boundaries and the

buoyancy force)

P5

ððð
dxfv}

ððð
dx rv, (2.21)

the integrated potential vorticity

Q5

ððð
dx f q}

ððð
dx v ' $u, (2.22)

and the potential enstrophy

Q
2
5

ððð
dx f q2 }

ððð
dx(v ' $u)2r)1, (2.23)

where q 5 v ' $u/r is the Ertel potential vorticity

conserved on fluid particles. The approximate dynamics

(2.14)–(2.16) conserves all of (2.18)–(2.23) because the

bracket (2.12) is exact and because the conservation of

(2.18)–(2.23) depends only on the form of the bracket.

(Although momentum conservation requires transla-

tion invariance of the Hamiltonian, the form of the

conserved momentum depends only on the bracket (for

a discussion of this point, see Shepherd 1990).

3. Sound-wave splitting

We discretize the sound-wave subdynamics by further

splitting (2.15) into each direction. For example, the

z-direction sound-wave dynamics is

›w

›t
5)›f

›z
, (3.1a)

›f

›t
5)c2

›w

›z
, (3.1b)

›(fu)

›t
5 0. (3.1c)

Equations (3.1a) and (3.1b) form a closed system equiv-

alent to

›

›t
w1

f

c

1 0
1 c

›

›z
w1

f

c

1 0
5 0;

›

›t
w) f

c

1 0
) c

›

›z
w) f

c

1 0
5 0. (3.2)

Once (3.2) are solved, (3.1c) determines u from the new

value of f. Equations (3.2) can be solved exactly if the

vertical grid spacing Dz is equal to c Dt, the sound ve-

locity multiplied by the time step: that is, no matter how

one chooses to interpolate between gridpoint values,
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the solution is exact if both Riemann invariants trans-

late exactly one grid distance. In an unbounded domain,

the exact solution is

w1
f

c

1 0n11

i

5 w1
f

c

1 0n
i)1

; w) f

c

1 0n11

i

5 w) f

c

1 0n
i11

,

(3.3)

where superscripts denote the time step and subscripts

denote the vertical grid location. The two Riemann in-

variants are shifted right and left. If a solid bottom

boundary is present at, for example, grid point 1, then

the boundary condition w 5 0 there implies that

w1
f

c

1 0n
0

5) w) f

c

1 0n
2

. (3.4)

This provides the recipe for reflecting one Riemann

invariant into the other. An analogous condition holds

at the upper rigid boundary. At interior grid points,

(3.3) corresponds to the finite difference formulas

wn11
i 5

1

2
(wn

i)1 1wn
i11)1

1

2c
(fn

i)1 ) fn
i11)

(3.5a)

and

fn11
i 5

1

2
(fn

i)1 1fn
i11)1

c

2
(wn

i)1 ) wn
i11);

(3.5b)

while at the lower boundary we have

wn11
1 5 0 (3.6a)

and

fn11
1 5fn

2 ) c wn
2 . (3.6b)

Since c5Dz/Dt, (3.5) and (3.6) are logical finite-difference
approximations. It is easy to verify that (3.5) and (3.6)

conserve an approximation to the mass in the form

1

2
f
1
1f

2
1f

3
1 ' ' ' (3.7)

and an approximation to the energy in the form [cf.

(2.13)]

01
w2

2

2
1

w2
3

2
1 ' ' ' 1 f2

1

4c2
1

f2
2

2c2
1

f2
3

2c2
1 ' ' ' .

(3.8)

Note that the boundary points receive half the weight—

represent half the volume—of the interior points.

Now let Sz(Dt) be the propagator corresponding to

the z-direction sound-wave split just described; that is, if

c(t) is any dependent variable, such as the value of w at

a particular grid point, then c(t 1 Dt) 5 Sz(Dt)c(t) is its
value after a time Dt5Dz/c, according to (3.5) and (3.6).

[Note that Sz includes the exact, small change in u that

arises from (3.1c) and the change in f.] Let Sx(Dt) and
Sy(Dt) be the corresponding propagators for sound-

wave propagation in the x and y direction, respectively.

For the moment, we assume that the grid spacing is the

same in all directions; an alternative will be considered

in section 7. Then the algorithm

c(t1 2Dt)5S
x
(Dt)S

y
(Dt)S

z
(Dt)S

z
(Dt)S

y
(Dt)S

x
(Dt)c(t)

(3.9)

corresponding to sound-wave propagation in the x direc-

tion for a timeDt, followed by y-direction propagation for
a time Dt, followed by z-direction propagation, etc., is a

logical approximation to evolution under the full, three-

dimensional sound-wave subdynamics (2.15) for a time

2Dt. The pyramidal arrangement (3.9) is called Strang

splitting and is well known to yield a result that is second-

order accurate in time (see, e.g., Durran 1999, 130–132).

Even more accurate splitting methods are known (e.g.,

Suzuki 1992), but these require time steps that are not

multiples of one another and cannot, therefore, take

advantage of our Riemann-invariant method for exactly

solving the directional splits. Since each directional split

conserves energy, mass, and momentum, the composite

algorithm (3.9) also conserves these quantities.

Our complete numerical algorithm will be a gener-

alization of (3.9) that contains splits representing the

remaining subdynamics (2.14) and (2.16) (as well as

splits containing the forcing and dissipation). However,

the errors caused by Strang splitting of (2.14) and (2.16)

are small compared to the errors in (3.9) because the

rotation and buoyancy subdynamics evolve much more

slowly than the sound waves. Thus, it makes sense to

analyze (3.9) by itself.

To see how (3.9) works in the presence of boundaries,

consider the two-dimensional domain shown in Fig. 1.

The solid lines represent solid boundaries, and the

dashed lines are ‘‘propagation lines’’ along which either

Sx or Sy is applied. The propagation lines lie wholly

within the fluid; nowhere is a propagation line tangent

to a boundary. The boundary conditions, analogous

to (3.6), assume that each propagation line intersects

the boundary in a locally normal direction. Thus, the

boundary is poorly resolved at sharp corners where two

perpendicular propagation lines intersect. In the invis-

cid case, segments of the boundary with many sharp

corners generate grid-scale sound waves. However, if

the Mach number is sufficiently small, then the energy

converted to sound waves in this way is negligible. The
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resulting small-scale oscillations, chiefly visible in the

pressure field, have little effect on the much slower

‘‘hydrodynamic’’ motions of primary interest.

The introduction of viscosity and no-slip boundary

conditions further reduces the generation of grid-scale

sound waves at rough boundaries. In the viscous case,

the boundary conditions described above are closely

analogous to the ‘‘bounce back’’ boundary conditions

corresponding to no-slip boundary conditions in lattice

Boltzmann theory. Experiments show that the spuri-

ously generated sound waves largely disappear if the

viscous boundary layer thickness is at least several grid

distances wide. Of course, one could also overcome

boundary roughness by either rounding or shaving the

corners in Fig. 1, but this would couple the sound waves

propagating in perpendicular directions—greatly com-

plicating our simple scheme.

For a more quantitative analysis of the sound-wave

splitting, we consider unbounded flow in two spatial di-

mensions. Letting u(x, y, t) 5 U(t) exp[i(kx 1 ly 2 vt)],

etc., we define the state vectorC(t)[ [U(t),V(t),F(t)/c]T.

Then the sound-wave propagators Sx(t) and Sy(t) corre-

spond to the matrices

S
x
(t)5

cos(ckt) 0 )i sin(ckt)

0 1 0

)i sin(ckt) 0 cos(ckt)

264
375

and

S
y
(t)5

1 0 0

0 cos(clt) )i sin(clt)

0 )i sin(clt) cos(clt)

264
375. (3.10)

The approximation

C(t)5 S
x
(t/2)S

y
(t)S

x
(t/2)C(0) (3.11)

is the two-dimensional analog of (3.9). On the other

hand, the exact solution of (2.15) in two dimensions is

C(t) 5 S(t)C(0), where

is the exact propagator. Here K 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2

p
. All of

the matrices in (3.10) and (3.12) are unitary matri-

ces, corresponding to the fact that the energy is con-

served.

Now, if either k 5 0 or l 5 0, then (3.11) is exact

because Sx and Sy are exact. To investigate the worst

possible case, we therefore set k5 l, corresponding to a

wave vector directed at a 458 angle to the coordinate

directions. In this case,

S
x
(Dt)5

cos(g) 0 )i sin(g)

0 1 0

)i sin(g) 0 cos(g)

24 35
and

S
y
(Dt)5

1 0 0

0 cos(g) )i sin(g)

0 )i sin(g) cos(g)

24 35, (3.13)

S(t)5
1

K2

k2 cos(cKt)1 l2 kl(cos(cKt)) 1) )ikK sin(cKt)

kl(cos(cKt)) 1) k2 1 l2 cos(cKt) )ilK sin(cKt)

)ikK sin(cKt) )ilK sin(cKt) K2 cos(cKt)

2664
3775 (3.12)

FIG. 1. Propagation lines for sound waves in a bounded domain.

The waves propagate along the dashed lines through the interior of

the fluid. Both components of the fluid velocity vanish at the

boundary points.

where g 5 ckDt 5 kDx ranges between 0 and p. For this same wave, the exact propagator (3.12) is

S(2Dt)5
1

2

cos(2
ffiffiffi
2

p
g)1 1 cos(2

ffiffiffi
2

p
g)) 1 )i

ffiffiffi
2

p
sin(2

ffiffiffi
2

p
g)

cos(2
ffiffiffi
2

p
g)) 1 cos(2

ffiffiffi
2

p
g)1 1 )i

ffiffiffi
2

p
sin(2

ffiffiffi
2

p
g)

)i
ffiffiffi
2

p
sin(2

ffiffiffi
2

p
g) )i

ffiffiffi
2

p
sin(2

ffiffiffi
2

p
g) 2 cos(2

ffiffiffi
2

p
g)

2664
3775. (3.14)
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For well-resolved sound waves (g / 0), (3.14) and (3.15)

differ by terms O(g3). However, for the worst-resolved

waves near g 5 p, the difference between (3.14) and

(3.15) is significant. The exact propagator (3.14) corre-

sponds to the two-dimensional form of (2.15), namely

›u

›t
5)›f

›x
,

›v

›t
5)›f

›y
;

›f

›t
5)c2

›u

›x
1

›v

›y

1 0
.

(3.16)

The eigenvalues of (3.14) are 1 and e6i 2
ffiffi
2

p
g, corre-

sponding, respectively, to steady nondivergent flow and

to sound waves propagating at the speed c in opposite

directions. The approximate propagator (3.15) has one

unit eigenvalue—corresponding to steady motion—

at all values of the nondimensional wavenumber g. How-

ever, the corresponding static eigenvector differs very

significantly from the exact static eigenvector

C[ [)1,11, 0]T (3.17)

near the highest resolved wavenumber.

The ratio of the sound-wave speed implied by the

approximation (3.15) to the exact value c implied by

(3.14) is shown by curve A in Fig. 2. Although the sound

speed of well-resolved waves with g ( 1 is close to c,

poorly resolved sound waves with g . 1 propagate at a

speed that vanishes in the limit g 5 p of the smallest

resolved wavelength. Thus, all three eigenvalues of

(3.15) approach unity as g / p, and the Strang-splitting

approximation (3.15) misrepresents the smallest resolved

sound waves as entirely static. Curve B in Fig. 2 is the

fraction of energy in steady nondivergent flow repre-

sented by the exact static eigenvector (3.17) that is lost

after two time steps of evolution by the approximate

dynamics (3.15). At two poorly resolved wavenumbers,

the energy in (3.17) is entirely drained in this short time.

Once again, this simple, linear analysis applies to the

worst possible case of sound waves propagating at a 458
angle to the coordinate axes; waves propagating in the

directions of the axes experience no errors at all. In the

complete model, which must include viscosity, the most

poorly resolved waves lie inside the dissipation range.

Nevertheless, our analysis suggests that Strang splitting

of sound waves suffers from errors that spuriously cou-

ple the slow hydrodyamic motions of primary physical

interest to unphysical small-scale motions with relatively

large pressure fluctuations. The fully nonlinear numeri-

cal experiments described in section 6 support this sug-

gestion, but the experiments show that the errors are

small and easy to control. These errors, which result

solely from the directional splitting, are the price to be

paid for the stark simplicity of our method.

It is important to emphasize that one would never use

our model to study sound waves any more than one

would use the lattice Botzmann method for that purpose.

In bothmodels the sound waves are fast modes that serve

merely as a device for (approximately) enforcing the in-

compressibility conditionwhile avoidingellipticboundary

value problems. Although we incorporate the remaining

physics by a splitting method similar to that used for the

sound waves, the remaining physics comprises slow

hydrodynamic modes that are well resolved by the short

time steps. As long as the sound speed is sufficiently

large, there is no significant coupling between the sound

waves and the slow hydrodynamic motions of primary

physical interest. Of course, the most convincing as-

sessment of our method is a direct comparison to more

conventional methods with proven accuracy. We do this

in section 6, but first we consider the additional splits

corresponding to buoyancy and rotation subdynamics.

4. Buoyancy splitting

In the buoyancy subdynamics (2.16), v and a evolve

but f remains fixed. In contrast to (3.1), the directional

splits of (2.16) cannot be solved exactly. Instead, we

seek an algorithm that semiconserves energy, buoyancy

(2.19), and its square (2.20). Since (2.20) involves f as

well as a, we must take the results of the previous sec-

tion into account; that is, the conservation of buoyancy

squared must be coordinated with the sound-wave split.

Again considering only the vertical direction, we first

note that the previously derived sound-wave algorithm

(3.5) corresponds to the spatial discretizations

Thus, in this worst-case situation, the approximation (3.11) replaces (3.14) by the product

cos(g) 0 )i sin(g)

0 1 0

)i sin(g) 0 cos(g)

264
375 1 0 0

0 cos(2g) )i sin(2g)

0 )i sin(2g) cos(2g)

264
375 cos(g) 0 )i sin(g)

0 1 0

)i sin(g) 0 cos(g)

264
375. (3.15)

F,Hf g
2
5

c2

2Dz
!
i

›F

›f
i11

) ›F

›f
i

1 0
›H

›w
i

1
›H

›w
i11

1 0
) ›H

›f
i11

) ›H

›f
i

1 0
›F

›w
i

1
›F

›w
i11

1 0/ .
(4.1)
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and

H5
1

2
!
N)1

i51

w2
i

2
1

w2
i11

2

 !
1

f2
i

2c2
1

f2
i11

2c2

 !

) (a
i
z
i
1a

i11
z
i11

) (4.2)

of (2.12b) and (2.13), where i 5 1 and i 5 N correspond

to solid boundaries. Note that (4.2) gives boundary

points half the weight of interior points. As previously

stated, the bracket (4.1) applies only to unbounded flow.

Thus, (4.1) and (4.2) imply the semidiscrete form

dw
i

dt
5)(f

i11
) f

i)1
)

2Dz
, (4.3a)

df
i

dt
5)c2

(w
i11

) w
i)1

)

2Dz
, (4.3b)

d(f
i
u
i
)

dt
5 0 (4.3c)

of the interior Eqs. (3.5), but not the semidiscrete form

dw
1

dt
5 0;

df
1

dt
5)c2

w
2

Dz
;

d(f
1
u
1
)

dt
5 0 (4.4)

of the boundary conditions (3.6).

For the discretization of the buoyancy bracket (2.12c),

we take

F,Hf g
3
5

c2

4Dz
!
i

a
i11

f
i11

1
a
i

f
i

1 0

3
›F

›a
i11

) ›F

›a
i

1 0
›H

›w
i

1
›H

›w
i11

1 0/

) ›H

›a
i11

) ›H

›a
i

1 0
›F

›w
i

1
›F

›w
i11

1 0.
.

(4.5)

Setting F5 wi, fi, ai in (4.5) and making use of (4.2), we

obtain the semidiscrete buoyancy subdynamics

dw
i

dt
5

1

4
(u

i)1
1 2u

i
1 u

i11
), (4.6a)

df
i

dt
5 0, (4.6b)

d

dt

f
i

c2
u
i

1 0
5

1

4Dz
[(u

i)1
1 u

i
)(w

i)1
1w

i
)

) (u
i
1 u

i11
)(w

i
1w

i11
)], (4.6c)

where we have used the definition ai 5 fiui/c
2. Like

(4.3), the subdynamics (4.6) apply only at interior grid

points 1, i,N. However, it is straightforward to show

that (4.6) and the boundary equations

w
1
5 0;

df
1

dt
5 0;

d

dt

f
1

c2
u
1

1 0
5

1

2Dz
[)(u

1
1 u

2
)w

2
]

(4.7)

semiconserve the energy (4.2) and the buoyancy

1

2
f
1
u
1
1f

2
u
2
1f

3
u
3
1 ' ' ' . (4.8)

It is only slightly harder to show that the combined

dynamics (4.3), (4.4), (4.6), and (4.7) together semi-

conserve the buoyancy squared

1

2
f
1
u21 1f

2
u22 1f

3
u23 1 ' ' ' . (4.9)

Thediscretebracket (4.5)wasobtainedusing theNambu-

bracket method developed in Salmon (2005, 2007). For

present purposes, it suffices merely to verify that (4.6)

and (4.7) have the claimed conservation properties.

Now letTz be the z-direction propagator corresponding

to (4.6) and (4.7). (Strictly speaking,Tz remains undefined

until we choose a particular time stepping algorithm for

the buoyancy split. In the experiments described in sec-

tions 6 and 8 we use second-order Runge–Kutta.) Let Tx

FIG. 2. Two measures of the error caused by Strang splitting of

the propagators Sx and Sy in the worst-case situation of a wave

vector pointing at a 458 angle to the grid. (a) The ratio of the sound

speed to its exact value c as a function of the nondimensional

wavenumber g. The largest value g 5 p corresponds to the most

poorly resolved wave. (b) The fraction of the energy in steady

nondivergent flow that is spuriously converted to sound waves in

two time steps. No errors occur when the wave vector points in the

x or y direction.
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and Ty be the corresponding propagators in the x and y

directions. These differ from Tz only in that no buoy-

ancy force occurs in the horizontal analogs of (4.6a). We

apply these three propagators along the same propa-

gation lines as the three sound-wave propagators. The

composition

c(t1 2Dt)5 S
x
S
y
S
z
T

x
T

y
T

z
T

z
T

y
T

x
S
z
S
y
S
x
c(t)

(4.10)

represents the combined sound-wave and buoyancy

dynamics. In (4.10) each propagator acts for a time Dt,
the time required for a sound wave to propagate a dis-

tance equal to the grid spacing. Each sound-wave prop-

agator exactly conserves energy, mass, momentum, and

buoyancy. Each buoyancy propagator semiconserves

these same quantities. The full algorithm (4.10), which

corresponds to the perfect-fluid dynamics without rota-

tion or inertia, semiconserves these quantities as well as

the buoyancy squared. To simulate the full Boussinesq

dynamics, it only remains to devise the splits corre-

sponding to rotation subdynamics (2.14).

5. Rotational splitting

The subdynamics (2.14), in which only the velocity v

evolves, conserves energy and momentum (mass, buoy-

ancy, and buoyancy squared are also trivially conserved).

However, the most efficient algorithm for (2.14) is one

that abandons exact conservation of momentum. First,

suppose that f [ c2 and that the relative vorticity is

omitted from (2.12a). Then, taking v 5 fk, we find that

(2.14a) reduces to

›u

›t
5 f y;

›y

›t
5)fu, (5.1)

which are exactly solvable as

u(t)5 u(0) cos(ft)1 y(0) sin( ft),

y(t)5 y(0) cos(ft)) u(0) sin(ft). (5.2)

In this case, the full dynamics resembles ‘‘planetary

geostrophic dynamics,’’ except that it retains the local

time derivative ›v/›t. The solution (5.2) conserves en-

ergy because it corresponds to a length-preserving ro-

tation of the velocity vector.

We solve the general case (2.14a) by three splits similar

to (5.2). We define the vertical rotation propagatorRz by

u(t)5 u(0)C
z
1 y(0)S

z

y(t)5 y(0)C
z
) u(0)S

z
, (5.3)

where Cz and Sz are the approximations

C
z
5

1) 1

4
g2

11
1

4
g2

; S
z
5

g

11
1

4
g2

; g[ t v
z
(0) c2/f

(5.4)

to cos(t vz(0) c
2/f) and sin(t vz(0) c

2/f), respectively,

and vz 5 f 1 ›y/›x2 ›u/›y is the vertical component of

the vorticity. The rational expressions (5.4) are faster to

compute than the corresponding trigonometric func-

tions. The solution (5.3) is an approximation because vz

evolves with the flow. However, (5.3) conserves energy

exactly because C2
z 1 S2z 5 1. The finite difference ap-

proximation to vz(0) is arbitrary; in practice, we use

simple centered differences.

We solve the complete subdynamics (2.14) by a

Strang composition ofRz and the propagatorsRx andRy

corresponding to vx and vy, respectively. Each rotation

split corresponds to a rotation of the velocity vector

about a single component of the vorticity. Exact mo-

mentum conservation is lost because it involves a can-

cellation between the terms in Rx, Ry, and Rz.

6. Two-dimensional experiments

In this section we compare solutions of the splitting al-

gorithm described in previous sections to solutions com-

puted by more conventional methods. Our algorithm is

S
x
S
y
R

z
D

xy
R

z
S
y
S
x
, (6.1)

where Sx and Sy are the sound-wave splits described in

section 3, Rz is the vertical rotation split described in

section 5, and Dxy is a split corresponding to the action

of a Navier–Stokes-type eddy viscosity with viscosity

coefficient n. All the splits except Dxy act for the time

Dx/c required for a sound wave to propagate a hori-

zontal grid distance Dx in either direction. At the apex

of the Strang-splitting pyramid, Dxy acts for time 2Dx/c.
The complete sequence (6.1) corresponds to an evolu-

tion time of 2Dx/c. For Dxy we use

u
ij
(t1 2Dx/c)5

u
ij
1a(u

i)1, j
1 u

i11, j
1 u

i, j)1
1 u

i, j11
)

(11 4a)

(6.2)

and similarly for nij, where subscripts denote grid loca-

tions, a 5 2n/(c Dx), and all variables on the right-hand

side of (6.2) are evaluated at time t. In the limit c / ‘,
the dynamics (6.1) corresponds to the two-dimensional

Navier–Stokes equations, which are in turn equivalent

to the vorticity equation
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›z

›t
1

›(c, z1 f )

›(x, y)
5 n=2z (6.3)

with

=2c5 z. (6.4)

For comparison, we solve (6.3) and (6.4) usingArakawa’s

(1966) energy- and enstrophy-conserving Jacobian and a

multigrid elliptic solver.

First we consider nonrotating, infinitely periodic flow

in a 2p 3 2p domain with 512 3 512 grid points. The

sound speed c 5 1. The initial condition is random flow

with rms velocity (i.e., Mach number) 0.01 and the

enstrophy spectrum shown in Fig. 3a. Thus, the time re-

quired for fluid particles to traverse the domain at the rms

velocity is about 600 time units. Figure 3a shows the ens-

trophy spectra in the splitting solution and in the Arakawa

solution at time t 5 60 for the case of vanishing viscosity.

Such inviscid solutions become increasingly unrealistic as

time increases and as enstrophy piles up near the highest

resolved wavenumber. However, the intermediate-time

comparison in Fig. 3a is useful in that it confirms that the

splitting algorithm spuriously accumulates enstrophy at

wavenumbers somewhat below the cutoff wavenumber, as

suggested by the discussion in section 3.

Figure 3b compares the Arakawa and splitting algo-

rithms at time t 5 100 for the case of a nonvanishing

viscosity n 5 1025 sufficient to fully resolve the dissi-

pation range. The Reynolds number based on the rms

velocity and domain size is about 5000. Viscosity de-

stroys the spurious hump in Fig. 3a, but the splitting

solution still contains significantly more energy in the

viscous dissipation range. The Arakawa and splitting

solutions can be brought into closer agreement byminor

adjustments to the algorithms—most simply by using a

slightly larger viscosity in the splitting algorithm—but

here we show only direct comparisons.

Figure 4 compares the vorticity in these same two

algorithms for the case of initially overlapping Gaussian

vortices of the same sign. Again we take n 5 1025. At

time t5 100 (Figs. 4a and 4b) the two vorticity fields are

indistinguishable. At time t5 300 (Figs. 4c and 4d)—the

time required for fluid particles to traverse half the

periodic domain—small differences within the vortex

cores become evident, but the two solutions are still

remarkably similar. For example, the energies, enstro-

phies, and maximum velocities differ by less than 1%.

All of these solutions are for the case f 5 0 of nonro-

tating flow. If f is a nonvanishing constant, it has no effect

on the exactly incompressible case governed by (6.3) and

(6.4). However, the splitting algorithm (6.1) corresponds

to slightly compressible, two-dimensional flow governed

by (2.8). By the analogy between rotating shallow-water

dynamics and rotating two-dimensional compressible

flow, we expect constant f 6¼ 0 to produce spurious effects

whenever the acoustic deformation radius c/f is less than

the domain size. Repeating the experiments shown in

Figs. 4a–d for the case c/f 5 2p of acoustic deformation

radius equal to the domain size, we find this difference to

be negligible. However, when c/f is much less than the

domain size, the Arakawa and splitting solutions differ

significantly; for example, Fig. 4e shows the vorticity at

FIG. 3. (a) The enstrophy spectrum corresponding to random

initial conditions and the spectra corresponding to inviscid solu-

tions of the Arakawa and splitting algorithms at a time equal to the

time required for fluid particles to traverse one-tenth the periodic

domain size. (b) The enstrophy spectra in viscous solutions of the

Arakawa and splitting algorithms at a time equal to the time re-

quired for fluid particles to traverse one-sixth the periodic domain

size. The Reynolds number is 5000.
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t 5 100 for a splitting-algorithm solution in which c/f 5
2p/10. The contrast between Fig. 4e and Figs. 4a,b is

striking. In the solution corresponding to Fig. 4e, the fluid

density departure f9 from the mean density c2 is only

about 2%, but the ratio of the ‘‘available internal energy’’

½
ÐÐ

dx(f9)2/c2 to the kinetic energy is about 0.5. In all

previously described solutions this ratio was less than

0.01. Thus, the requirement c/f . L, where L is the do-

main size, is a stringent requirement of our method.

How does this requirement compare to our other

requirement that the Mach number be small? In basin-

scale ocean modeling, the largest fluid velocities—the

largest Mach numbers—occur in western boundary

layers. The western boundary layer velocity typically

scales asUIL/l, whereUI is the scale for the interior fluid

velocity and l 5
ffiffiffiffiffiffiffiffiffiffiffi
UI /b

p
is the inertial western boundary

layer thickness. Assuming that f is of size Lb, the re-

quirement that the Mach number be small in the west-

ern boundary layer becomes c/f . l; the acoustic de-

formation radius must exceed the western boundary

layer thickness. Thus, the previous requirement c/f . L

is much more severe: for L 5 4000 km the sound speed

must exceed 25 000 km day21. Although this is five

times smaller than the actual sound speed, it forces the

time step to be very small. If, for example, the grid

spacing Dx 5 4 km, then Dt 5 Dx/c is only about 15 s.

However, these short time steps are really analogous to

individual cycles of the elliptic solver in the more con-

ventional approach. Compared to it, our splitting method

offers the advantages of extreme simplicity and massively

parallel form.

In the nonrotating experiments described above, the

splitting and Arakawa methods seem about equally ef-

ficient. In these experiments the maximum velocity

(maximum Mach number) never exceeds 0.03. Other

experiments show that strong coupling between the

hydrodynamic modes and the sound waves does not

occur until the Mach number reaches 0.1–0.2. In the

nonrotating experiments described above, the splitting-

algorithm time step Dx/c 5 2p/512 5 0.012 is about five

times smaller than the time step Dt 5 0.05 Dx/urms used

for the Arakawa algorithm. However, the latter re-

quires about 10% more CPU time per unit of simulated

time. Most of the time required by the Arakawa algo-

rithm goes to the solution of (6.4). In domains with a

complicated, irregular shape, the only practical methods

for solving elliptic equations like (6.4) are iterative

methods such as multigrid or conjugate gradient. How-

ever, such methods are difficult to code in domains with

an irregular shape. In contrast, the splitting algorithm is

no more difficult to implement in complicated geometry

than in simple geometry. One needs only to store the

beginning and ending locations of each propagation line.

Figure 5 depicts a splitting-algorithm solution in a

two-dimensional domain with an arbitrary shape. Again

we take c 5 1 and n 5 1025. The domain width is O(1)

and there are 3102 interior grid points. The initial con-

ditions (Fig. 5a) correspond to counterrotating vortices

of opposite sign with maximum velocity 0.10. These

vortices propel each other toward the irregular bound-

ary, generating large values of vorticity in thin viscous

boundary layers that enforce theno-slip condition.Bytime

t 5 10 (Fig. 5b) these viscous boundary layers dominate

the vorticity field. To keep better track of the interior

vorticity, we follow the windowed vorticity (Fig. 5c), ob-

tained by multiplying the window contoured in Fig. 5d

by the vorticity in Fig. 5b. The window is a function that

varies smoothly between zero on the solid boundary and

unity in the interior of the domain. Figure 5e shows the

FIG. 4. The merging of two initially overlapping Gaussian vor-

tices as computed by the (a),(c) Arakawa algorithm and (b),(d)

the splitting algorithm at times (a),(b) t 5 100 and (c),(d) t 5 300.

(e) The splitting-algorithm solution at t 5 100 with a constant

Coriolis parameter chosen to make the acoustic deformation ra-

dius equal to one-tenth the periodic domain size. Darker contours

correspond to larger values.
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windowed vorticity at t 5 30, by which time the maxi-

mum fluid velocity has fallen to 0.044. For comparison,

Fig. 5f shows a passive scalar field u that is initially set

equal to the vorticity. Although the scalar has a diffu-

sivity equal to the fluid viscosity, Figs. 5e and 5f differ

significantly because of the huge difference in boundary

conditions: no flux for the scalar versus no slip for the

vorticity. Nevertheless, the similarity between Figs. 5e

and 5f in the fluid interior shows that the vorticity there

is carried on fluid particles (apart from the effects of

viscosity). We solve for u with the splitting sequence

T
x
T

y
D

x
D

y
D

y
D

x
T

y
T

x
, (6.5)

where Tx and Ty are the buoyancy splits defined in

section 4, and Dx and Dy are diffusion splits similar to

(6.2) but acting only in the x and y directions, respec-

tively, and incorporating the boundary conditions of no

scalar flux through the boundary (because of the no-flux

boundary conditions, it is simplest to split the diffusion

into its directional components). Since neither Tx nor Ty

contains buoyancy force, u is a passive scalar and the

various splits in (6.5), each of which acts for a time Dx/c,
need not be sandwiched within (6.1). In practice, we

alternate between (6.1) and (6.5). Finally, in this same

flow field, we consider a passive scalar with the random

initial conditions shown in Fig. 5g. The scalar field at t5 30

(Fig. 5h) shows how (6.5) accommodates the no-flux

boundary conditions.

It remains to consider solutions containing buoyancy

force. This we do in section 8, but first we address a

fundamental difficulty that affects ocean circulation

models of all kinds.

7. The aspect-ratio trick

The typical horizontal resolution in ocean general cir-

culation models has increased enormously: the horizontal

grid spacing Dx is now sometimes as small as a few kilo-

meters. However, this is still much larger than the typical

vertical grid spacing Dz of a few tens of meters. The huge

disparity between these scales is the source of many dif-

ficulties. To cite but one example, open ocean convection

occurs in plumes that are no wider than they are deep.

The models cannot resolve these plumes. Moreover, be-

cause the plumes occur on the scale of fastest growth for

convective instability, the model convection occurs at the

smallest resolved horizontal scales—a recipe for numer-

ical noise. In practice, eddy viscosity damps out the con-

vective instability and an explicit, but quite arbitrary,

vertical mixing relieves static instability.

Browning et al. (1990) proposed that the vertical com-

ponent of the Boussineq momentum equation (2.17a) be

replaced by

FIG. 5. Splitting-algorithm solution of counterrotating vortices

in an arbitrarily shaped domain with no-slip boundaries. By time

t 5 10 (a) the initial vorticity has evolved to (b) the state in which

viscous boundary layers dominate. The windowed vorticity, ob-

tained by multiplying the field in (b) by the (d) window, reveals (c)

the interior pattern. (e) The windowed vorticity at t 5 30 and (f) a

passive scalar initially equal to the vorticity at the same time. An

initially random passive scalar at (g) t 5 0 and (h) t 5 30 in the

same flow. Darker contours correspond to large values.
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1

m2

Dw

Dt
5)›f

›z
1 u (7.1)

in which m 5 Dz/Dx ( 1 is a small parameter. The

standard Boussinesq equations correspond to m 5 1.

The modification (7.1) increases the vertical inertia by a

vast amount, but not so much as to upset hydrostatic

balance at large scales of motion. As pointed out by

Newberger and Allen (1996) and Salmon (1999b), the

modification (7.1) is equivalent to erasing the factor of

aspect-ratio-squared that precedes the vertical acceler-

ation when the Boussinesq equations are written in

standard nondimensional form. This ‘‘aspect ratio trick,’’

which has been independently rediscovered by several

authors, was originally designed only to allow longer

time steps. However, as one of several bonuses, this

trick increases the horizontal scale of interior convec-

tion and the thickness of sidewall boundary layers to

the point where they are resolved by the model. The

aspect-ratio trick is close in spirit to our treatment of

sound waves: just as we loosen the incompressibility

constraint—decrease the sound speed—to allow longer

time steps, the modification m ( 1 loosens the hydro-

static constraint to the same purpose.

Newberger and Allen (1996) compare numerical so-

lutions using (7.1) with very small values of m to solu-

tions of the standard Boussinesq equations with m 5 1.

They find significant differences. However, their test

cases have a relatively high horizontal resolution: the

typical domain width is 60 km. In such cases, the stan-

dard Boussinesq equations can be accurately solved. In

basin-scale calculations the choice is between severely

underresolving the exact physics, on the one hand, and

accurately solving the modified physics, on the other. In

this paper, we choose the latter. However, as in Salmon

(1999b), our basic motivation is a desire to make sound

waves propagate one vertical grid spacing in the same

time required to propagate one horizontal grid spacing.

Thus, if c is the horizontal sound speed, we take the

vertical sound speed to be mc.

The modification (7.1) is equivalent to the following

changes to the algorithm described in previous sections.

First, we replace the vertical part of the sound-wave

bracket (2.12b) by

F,Hf g
2
5m2c2

ððð
dx

dH

dw

›

›z

dF

df
) dF

dw

›

›z

dH

df

1 0
.

(7.2)

Second, we replace the vertical part of the buoyancy

bracket (2.12c) by

F,Hf g
3
5m2c2

ððð
dx

a

f

dH

dw

›

›z

dF

da
) dF

dw

›

›z

dH

da

1 0
.

(7.3)

Third, in the rotation bracket (2.12a) we replace the

relative vorticity

v5$ 3 v5 (w
y
) y

z
, u

z
) w

x
, y

x
) u

y
)

! (w
y
) m2y

z
,m2u

z
) w

x
, y

x
) u

y
)

[ (vx,vy,vz). (7.4)

Finally, we replace the Hamiltonian (2.13) by

H5

ððð
dx

1

2
u2 1

1

2
y2 1

1

2

w2

m2
1

1

2

f2

c2
) az

1 0
.

(7.5)

The effect of these changes is to replace the vertical

sound-wave split by

›w

›t
5)m2 ›f

›z
,

›f

›t
5)c2

›w

›z
,

›(fu)

›t
5 0; (7.6)

the vertical buoyancy split by

›w

›t
5m2u,

›f

›t
5 0,

›

›t

fu

c2

1 0
5) ›

›z
(wu); (7.7)

and the two horizontal rotation splits by

›u

›t
5 0,

›y

›t
5

c2

f
vx w

m2
,

›w

›t
5)c2

f
m2vxy ; (7.8)

›u

›t
5)c2

f
vy w

m2
,

›y

›t
5 0,

›w

›t
5

c2

f
vyu; (7.9)

where the modified vorticity components are defined in

(7.4). The energy-conserving solutions of (7.8) and (7.9),

analogous to (5.3), are

y(t)5 y(0) cos(g
x
)1

w(0)

m
sin(g

x
),

w(t)

m
5

w(0)

m
cos(g

x
)) y(0) sin(g

x
),

where

g
x
[

v
x
(0)

m
tc2/f (7.10)

and

u(t)5 u(0) cos(g
y
)) w(0)

m
sin(g

y
),

w(t)

m
5

w(0)

m
cos(g

y
)1 u(0) sin(g

y
),

where

g
y
[

v
y
(0)

m
tc2/f. (7.11)
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The vertical rotation split Rz is unaffected. We ap-

proximate the rotation splits (7.10) and (7.11) in the

same manner as (5.4). If m , 1, the split (7.10) rotates

the vector (y, w) in an ellipse of aspect ratio m. In the

limit c / ‘, the complete modified dynamics,

›u

›t
5

c2

f
)v ' $u1 1

2

›

›x
(u2 1 y2 1w2/m2)

/ .
) ›f

›x
,

(7.12a)

›y

›t
5

c2

f
)v ' $y1 1

2

›

›y
(u2 1 y2 1w2/m2)

/ .
) ›f

›y
,

(7.12b)

›w

›t
5

c2

f
)v ' $w1

m2

2

›

›z
(u2 1 y2 1w2/m2)

/ .

) m2 ›f

›z
1m2u, (7.12c)

›f

›t
5)c2$ ' v, (7.12d)

and

›

›t

f

c2
u

1 0
5)$ ' (vu), (7.12e)

limit on the standard Boussinesq equations (2.17) ex-

cept that the vertical momentum equation is replaced

by (7.1). In particular, a scale analysis shows that (7.12e)

approximates (2.17c) when the scale depth c/N is much

greater than the fluid depth H, where N is the scale for

the Väisälä frequency. Thus, if the horizontal domain

size L is much greater than the internal deformation

radius NH/f, the most stringent requirement on sound

speed is c/f & L.

8. Ocean section experiments

To test the buoyancy split and the modifications

proposed in the previous section, we consider rotating

y-independent flow in the x–z plane. As c / ‘, the dy-

namics (7.12) (with viscous and diffusive terms added)

limits on

›

›t
)A

h
(›

xx
1 ›

yy
))A

v
›
zz

/ .
u5)›(c,u)

›(x, z)
1 f y ) ›f

›x
,

(8.1a)

›

›t
)A

h
(›

xx
1 ›

yy
))A

v
›
zz

/ .
y5)›(c, v)

›(x, z)
) fu,

(8.1b)

›

›t
)A

h
(›

xx
1 ›

yy
))A

v
›
zz

/ .
w5)›(c,w)

›(x, z)

1m2 )›f

›z
1 u

1 0
,

(8.1c)

and

›

›t
)K

h
(›

xx
1 ›

yy
))K

v
›
zz

/ .
u5)›(c, u)

›(x, z)
, (8.1d)

where c, defined by u 5 2cz and w 5 cx, is the

streamfunction for the flow in the x–z plane and Ah, Av,

Kh, andKv are horizontal and vertical eddy viscosity and

diffusion coefficients. We solve (8.1) by the algorithm

D
xz
R

x
R

y
R

z
T

x
S
x
S
z
T

z
T

z
S
z
S
x
T

x
R

z
R

y
R

x
D

xz
, (8.2)

where Dxz represents both the viscosity and diffusion

splits. All the splits in (8.2) act for the time Dx/c5Dz/mc.
The viscosity split incorporates the prescribed wind

stress and the no-slip boundary conditions at solid bound-

aries. The diffusion split incorporates surface heat flux

and the no-flux boundary conditions at solid bound-

aries. All the other splits retain the conservation prop-

erties described in previous sections. The computational

domain (e.g., Fig. 6) is the east–west section with rugged

bathymetry and maximum depth H 5 1.08 km between

the southern tip of San Clemente Island and the site of

our computations at La Jolla, California, a distance L5
101.4 km to the east. Besides the specified geometry and

the forcing/initial conditions, the only parameters of the

model are the horizontal grid spacing Dx, the vertical

grid spacing Dz, the sound speed c, and the eddy coef-

ficients Ah, Av, Kh, and Kv.

Idealized, flat-bottom, homogeneous-fluid solutions

were found to agree closely with linear boundary layer

theory provided that the acoustic deformation radius c/f

was sufficiently large and boundary layers were well re-

solved. In particular, the interior northward velocity

agrees with the theoretical prediction yI 5
ffiffiffi
2

p
ty/

ffiffiffiffiffiffiffiffiffi
f Av

p
to within 0.01% when c/f5 10L, when the sidewall (i.e.,

Stewartson) boundary layer thickness dSt[ (AhL/f)
1/3 is

at least 4Dx, and when the Ekman boundary layer

thickness dEk [ (Av/f)
1/2 is at least 4Dz. When c/f5 2L,

this error increased to 5.3%. When dEk5 2Dz, this error
increased to 3.0%. In all the calculations to be presented,

we take c/f 5 10L. Since our coarsest-resolution experi-

ments correspond to Dx 5 510 m and Dz 5 5.43 m, we

choose Ah 5 6.69 m2 s21 to make dSt 5 4 3 510 m, and

we choose Av 5 3.7153 1022 m2 s21 to make dEk 5 43
5.43 m. For the diffusion coefficients we take Kh 5 Ah
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andKv5 5.03 1024m2 s21. We use these same values in

all the experiments discussed.

All of these eddy coefficients are somewhat larger

than the values typically used for the interior regions of

ocean circulation models. Here, as is normally done

there, it would be possible to allow these coefficients to

vary between relatively large values in the boundary

layers and much smaller values in the ocean interior.

However, in this initial study, it was thought best to keep

the number of parameters to an absolute minimum by

allowing only constant values for the eddy coefficients.

We discuss only a few of many dozens of experiments

performed. Because nothing varies in the y direction,

our solutions cannot be realistic; they serve only to

demonstrate model behavior. Figures 6 and 7 show the

streamfunction c, the northward flow y, and the buoy-

ancy u at time t5 50 days in solutions that begin from a

state of rest and uniform stratification du/dz. The ini-

tially uniform stratification corresponds to a change of

one unit of su (1 s unit) from deepest ocean bottom

to the ocean surface. In both solutions, Dx 5 510 m and

Dz 5 5.43 m, corresponding to a maximum of 200 grid

points in each direction. In the solution of Fig. 6, the

buoyancy force has been turned off; thus u is a passive

scalar. In the solution of Fig. 7, the buoyancy force is on.

Both solutions are driven by a uniform southward wind

stress ty 5 21 cm2 s22. In both solutions, the southward

wind stress drives a strong westward flow in the surface

Ekman layer. In the homogeneous fluid solution of Fig. 6,

downwelling near San Clemente Island feeds a bottom

Ekman layer in which the flow returns to the mainland.

In the solution of Fig. 7, the stratification resists down-

welling and a stronger flow closes at intermediate depth.

A density inversion caused by the strong westward flow

in the upper Ekman layer produces a weak convective

cell in Fig. 7c. The oscillations in Figs. 6a and 7a are

sound waves generated by the flow impinging on San

Clemente Island. They disappear as the resolution or

the horizontal viscosity is increased.

Figures 8 and 9 show solutions designed to test the

performance of the model when buoyancy forces are

strong. The initial condition is a statically unstable state

of rest with f [ c2 and

u5)u
0
exp()z/100m), (8.3)

where the amplitude u0 corresponds to 0.10 s units. In

this case the model rapidly adjusts to a state of hydro-

static balance by generating sound waves. It is possible

to avoid this brief adjustment phase by choosing the

initial pressure to be in hydrostatic balance with the

initial buoyancy, but it seems simpler to let the sound

waves do their work. In any case, the sound waves are

quickly overwhelmed by the much larger convective

motions of primary interest.

The solution of Fig. 8 has the same spatial resolution

as the experiments shown in Figs. 6 and 7, correspond-

ing to a maximum of 200 grid points in both directions.

In the solution of Fig. 9, the horizontal grid spacing has

been reduced from Dx 5 510 m to Dx 5 204 m, cor-

responding to a maximum of 500 grid points in the

horizontal direction. Because of the aspect-ratio trick,

convective instability is well resolved in both Figs. 8 and 9.

However, there is a real, physical difference between

these two solutions because they correspond to different

values of m (0.0106 and 0.0267 in Figs. 8, 9, respectively).

Once again, exact Boussinesq dynamics corresponds to

m 5 1 and is achieved only by allowing Dx 5 Dz. Be-
cause of the increased resolution, the convection is

stronger and proceeds more rapidly in Fig. 9 than in

Fig. 8. The times in the two figures have been chosen to

represent the flows at similar stages of development. At

the time corresponding to Fig. 8d, the vertical rms ve-

locity is 88.9 m day21; in Fig. 9d it is 224 m day21. In

FIG. 6. The (a) streamfunction, (b) northward velocity, and (c)

‘‘buoyancy’’ in an east–west section between San Clemente Island

on the left and La Jolla on the right. In this experiment the

buoyancy force is switched off, thus (c) depicts a passive scalar u

for which du/dz is initially a constant. The flow, driven by a uniform

southward wind stress of magnitude 1 cm2 s22, is westward in the

surface Ekman layer and eastward in the bottom Ekman layer. The

maximum u, y, and w are 3.46 and 20.9 km day21 and 57.6 m day21,

respectively. At the time shown (50 days after a state of rest) the

velocity field is steady. Darker contours correspond to larger

values.
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both figures, convection occurs fastest near the two

coastlines. Our method easily accommodates the rapid

descent of dense water along the rough, stair-step to-

pography.

9. Discussion

The key features of our model are its extreme sim-

plicity and its massively parallel form. Each of the

propagators in (8.1) represents a simple operation. For

example, each of the sound-wave propagators, Sx, Sy,

and Sz, which merely shift Riemann invariants left and

right, corresponds to a computer subroutine with only

26 lines of FORTRAN. The other propagators are

comparably simple. Both the sound-wave and buoyancy

propagators Tx, Ty, and Tz operate along propagation

lines that require no elaborate treatment of the bound-

aries. At the beginning of the calculation, one must use

the bathymetric data to determine the beginning and

ending location of each propagation line but, once these

locations are stored, very complicated boundary shapes

require no more operations than very simple ones. The

rotation propagators Rx, Ry, and Rz operate on interior

fluid points independently. Thus, every propagation line

in the case of the sound and buoyancy propagators, and

every interior point in the case of the rotation propa-

gators, could be sent to a different processor. The forc-

ing and dissipation propagators could be handled in the

same way. To maintain load balance among the pro-

cessors, one could sort the propagation lines by their

length and then process lines of similar length simulta-

neously. The sorting of propagation lines need only be

done once (for each of the three directions) at the be-

ginning of the computation.

The tremendous advantage of massively parallel form

should easily compensate for the primary disadvantage

of our model: the very short time cycle required to sat-

isfy the condition that the acoustic deformation radius

c/f be larger than the domain size. For a domain size of,

say, 4000 km and a horizontal grid spacing of Dx5 5 km,

the sound speed must exceed 25 000 km day21 and the

time cycle 2Dx/c must be less than 1/2 min. While this

FIG. 8. The buoyancy at (a) 14 days, (b) 18 days, and (c) 20 days

and (d) the streamfunction at 20 days in an experiment beginning

at a state of rest and the unstable straification (8.3). The grid

spacings are Dx 5 510 m and Dz 5 5.43 m, corresponding to a

maximum of 200 grid points in each direction. At the final time, the

maximum eastward, northward, and vertical speeds are 5.65 and

21.4 km day21 and 268 m day21, respectively.

FIG. 7. As in Fig. 6, but with the buoyancy force turned on. The

uniform initial stratification corresponds to a difference of 1 s unit

between the ocean surface and deepest ocean bottom. The strati-

fication concentrates the flow in the upper ocean, hence the

maximum u, y, and w (4.81 and 59.8 km day21 and 131 m day21,

respectively) are larger than in Fig. 6. Static instability in the upper

Ekman layer generates a small convective cell at midbasin. Darker

contours correspond to larger values.
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sound speed is still about five times smaller than the

actual sound speed, such time steps are, indeed, very

short. These short time steps should be compared not to

the time steps in conventional models but to the itera-

tion steps required to solve elliptic equations at fixed

times; however, the iteration steps are not as easy to

program in parallel form.

Although our completemodel is somewhat novel, none

of its key ingredients is completely new. For example,

operator splitting (sometimes called fractional steps) has

been tried by many authors (see, e.g., Skamarock 2006).

However, our splitting method violates a frequently

cited rule of conventional operator splitting that makes

our method much more akin to the lattice Boltzmann

method. In conventional splitting, one normally avoids

separating fundamental physical balances into different

splits. In our model, geostrophic balance is spread

among Sx and Sy, which contain the horizontal pressure

gradient, and Rz, which contains the Coriolis force.

Similarly, hydrostatic balance is spread between Sz,

which contains the vertical pressure gradient, and Tz,

which contains the buoyancy force. If one analyzes the

subsequence SzTzTzSz of (8.2) in the manner of section 3,

one finds a static (zero frequency) eigenvector corre-

sponding to hydrostatic balance. This static eigenvector

has vanishing vertical velocity at all wavenumbers. The

existence of such a zero-velocity eigenvector is some-

what remarkable when one considers that SzTzTzSz
achieves hydrostatic balance by alternately accelerating

fluid particles in Tz and then decelerating them in Sz. In

fact, the individual components SzTz and TzSz each

have static eigenvectors corresponding to physical states

with nonzero vertical velocities. Thus, Strang splitting of

the propagators is essential to our method.

However, the time stepping error associated with

Strang splitting is the primary source of model inac-

curacy. In fact, the buoyancy split is the only split (be-

sides dissipation) in which spatial truncation error is

even an issue. This spatial truncation error could be

reduced by using a more accurate form of (4.5), but the

Strang-splitting error could not be eliminated without

sacrificing the model’s key advantages. The error asso-

ciated with Strang splitting of the subsequence SxSySySx
was analyzed in section 3. Analysis of the subsequence

SzTzTzSz yields similar results. One finds that the small-

est resolved wavelength (two grid distances) is severely

misrepresented, but motions at twice this minimum

wavelength contain errors of only about 10%. Hence, the

smallest resolved wavelengths must be kept well inside

the dissipation range.

Even in conventional grid models, the most poorly

resolved waves misbehave. The question, then, is whether

this is more of a problem in the proposed method than

in conventional models. The evidence suggests that it

is more of a problem—but not much more. For exam-

ple, if one looks closely at Figs. 4c and 4d, which cor-

respond to the Arakawa and splitting algorithms, re-

spectively, with the same spatial resolution, one sees

that the vortex cores in Fig. 4d contain small-scale os-

cillations that are probably noise. As stated in section 6,

this disagreement disappears if the viscosity is increased.

Of course, increasing the viscosity sacrifices spatial

resolution.

It is important to emphasize that our proposed

method is closely related to lattice Boltzmann methods

and that lattice Boltzmann methods lie at the opposite

end of the trade-off curve from conventional models

containing numerous logical branches and other re-

finements. In lattice Boltzmann models, mindlessly

simple operations are repeated with mind-numbing

FIG. 9. The buoyancy at (a) 5 days, (b) 6 days, and (c) 8 days and

(d) the streamfunction at 8 days in an experiment beginning at the

same statically unstable initial state as shown in Fig. 8. The only

difference between this experiment and that shown in Fig. 8 is that

the horizontal grid spacing has been reduced to Dx 5 204 m,

corresponding to 500 grid points in the east–west direction. At the

final time, the maximum eastward, northward, and vertical speeds

are 16.5 and 30.9 km day21 and 837 m day21, respectively.
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frequency. At least slightly greater spatial resolution

may be required to achieve the same accuracy as in

conventional models, but the potential for efficient

parallel processing is much greater. Our method differs

from pure lattice Boltzmann models in that we use the

lattice Boltzmann approach only for the sound-waves

split. Pure lattice Boltzmann models solve the complete

dynamics with particle-hopping operations. To incor-

porate the advective momentum flux, the particles must

hop in diagonal directions and this seems to be the bane

of using the pure lattice Boltzmann methods in ocean

models in which the physics itself is very different in the

vertical and horizontal directions. In this paper, we

combine the most attractive properties of the lattice

Boltzmann approach with useful properties of the con-

ventional approaches.

Chief among these useful properties is the ability to

maintain at least some conservation laws. Although the

analytical dynamics (2.11)–(2.13) conserve all the in-

variants (2.18), our model equations conserve, or semi-

conserve, only that subset of invariants noted in the

preceding sections. (Since, as explained in section 7, the

aspect-ratio trick is equivalent to a formal rescaling of

the vertical coordinate, it alters but does not destroy

conservation laws.) In particular, our model equations

do not conserve potential vorticity. However, the re-

tained conservation laws—mass, energy, buoyancy, and

buoyancy squared—lend our method great stability.

When breakdown occurs, it is always because the local

Mach number becomes too high. The breakdown con-

sists of a spurious local generation of sound waves. In

fact, relatively vigorous sound waves are always present

but, if the sound speed is sufficiently large (i.e., if the

time step is sufficiently small), then the sound waves

are negligible in comparison to the slow hydrodynamic

motions of fundamental interest.

Our method could not easily be applied to nonuni-

form grids. To maintain the important feature that

sound waves move one grid distance in a time step, the

sound speed would need to vary with location. The time

step would then be determined by the need to keep the

Mach number small in the regions of highest spatial

resolution. For such a small time step, one might as well

enjoy the accuracy and simplicity of a uniformly high-

resolution model. Although it is somewhat jarring to

imagine an ocean model in which the vertical spacing

between grid points is everywhere the same, this ap-

parent wastefulness is compensated by the stark sim-

plicity of the computer code and the potential for effi-

cient parallel processing.

Could the proposed method really be more efficient

than the methods currently in use? This question can

only be answered by actual calculations involving large

irregularly shaped three-dimensional domains on mas-

sively parallel computing platforms. However, some

tentative answers will be ventured. If one is strictly in-

terested in hydrostatic modeling—for which the con-

ventional approach is to solve a two-dimensional elliptic

problem or to separately time step a fast external-

gravity wave system—then the proposed method is

relatively inefficient. However, there are good reasons

to anticipate the widespread use of nonhydrostatic dy-

namics. In fact, this paper actually advocates the exag-

geration of nonhydrostatic effects. That is, instead of

delaying the incorporation of nonhydrostatic physics

until increases in horizontal resolution make it abso-

lutely necessary, we propose to accelerate this incor-

poration by means of the ‘‘aspect-ratio trick,’’ adopting

a physics in which the smallest horizontal scales are

always nonhydrostatic. The aspect-ratio trick allows us

to apply each of our propagators exactly twice in a time

cycle. At the same time, the trick addresses a funda-

mental difficulty shared by all ocean circulation mod-

els, associated with the scale separation between the

horizontal and vertical directions. Conventional ap-

proaches to this difficulty include subgrid-scale closures

that explicitly mix buoyancy to neutral stability and

greatly enhanced vertical mixing coefficients in regions

of static instability.

Although this paper reports only two-dimensional

solutions, a three-dimensional version of the model has

been tested at the relatively low resolution of 1003.

Much more testing is required. However, it appears that

the generalization from two to three space dimensions

requires no new ideas or methods beyond those pre-

sented here.
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