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Ordinary two-dimensional turbulence corresponds to a Hamiltonian dynamics that con-
serves energy and the vorticity on fluid particles. This paper considers coupled systems
of two-dimensional turbulence with three distinct governing dynamics. One is a Hamil-
tonian dynamics that conserves the vorticity on fluid particles and a quantity analogous
to the energy that causes the system members to develop a strong correlation in velocity.
The other two dynamics considered are non-Hamiltonian. One conserves the vorticity
on particles but has no conservation law analogous to energy conservation; the other
conserves energy and enstrophy but it does not conserve the vorticity on fluid particles.
The coupled Hamiltonian system behaves like two-dimensional turbulence, even to the
extent of forming isolated coherent vortices. The other two dynamics behave very differ-
ently, but the behaviors of all four dynamics are accurately predicted by the methods of
equilibrium statistical mechanics.

1. Introduction

Freely decaying two-dimensional Navier-Stokes turbulence is governed by

ζt = J(ζ, ψ) + ν∇2ζ, (1.1)

where ψ(x, y, t) the streamfunction at Cartesian location (x, y) and time t, ζ = ∇2ψ
is the vorticity, ν is the viscosity coefficient, v = (u, v) = (−ψy, ψx) is the velocity,
and J(A,B) ≡ AxBy −BxAy. Subscripts denote partial derivatives. Our boundary con-
ditions are spatial periodicity, ψ(x + 2π, y) = ψ(x, y + 2π) = ψ(x, y). The theory of
two-dimensional turbulence enjoys an extensive literature. The pioneering papers are by
Fjortoft (1953), Kraichnan (1967), and Batchelor (1969). For a recent review see Boffetta
and Ecke (2012). Much of the theory is based upon fundamental conservation laws. When
ν = 0, the dynamics (1.1) conserves the energy

E =
1

2

∫∫
dx ∇ψ · ∇ψ, (1.2)

and every quantity of the form ∫∫
dx G(ζ), (1.3)

where the integration is over the periodic domain and G(·) is an arbitrary function. The
invariants (1.3) include the enstrophy

Z =
1

2

∫∫
dx ζ2 (1.4)
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as a special case.
In this paper we study coupled systems of two-dimensional turbulence with conserva-

tion laws analogous to, but substantially different from, those of (1.1). Our focus is on
the degree to which system behavior depends on conservation laws and can be predicted
by the methods of equilibrium statistical mechanics. As an example of a coupled system,
consider

ζ1t = J(ζ1, ψ2) + ν∇2ζ1,

ζ2t = J(ζ2, ψ1) + ν∇2ζ2, (1.5)

where the numerical subscripts denote the two system members, and here and throughout
this paper ∇2ψi = ζi. If the initial conditions are such that ψ1(x, y, 0) = ψ2(x, y, 0),
then the two system members evolve as identical copies. What happens if ψ1(x, y, 0) 6=
ψ2(x, y, 0)? We shall show that, if the initial conditions are to any degree positively
correlated (in a sense explained below), then the two systems eventually become perfectly
correlated (in the same sense) and evolve together as a single, nearly identical, system.
Moreover, this somewhat surprising behavior is accurately predicted by the methods of
equilibrium statistical mechanics.

Our motivation for studying coupled systems like (1.5) is to better understand the
dynamics (1.1) of ordinary two-dimensional turbulence. Suppose, as in the numerical so-
lutions to be described, that the initial conditions on ψ1 and ψ2 correspond to the same
wavenumber spectrum but with a phase difference in Fourier coefficients that controls the
correlation between the systems. Then the two systems evolve in a statistically identical
manner. That is, the statistics of ψ1(x, y, t) match the statistics of ψ2(x, y, t) at all later
times. This means that, according to (1.5), the vorticity ζ1 is advected by a velocity field
that is statistically identical to that associated with ψ1 but lacks the precise connection
implied by ∇2ψ1 = ζ1. At the beginning of this study it was thought that similarities
between the solutions of the coupled system (1.5) and ordinary two-dimensional turbu-
lence (1.1), including the tendency to form isolated coherent vortices, could be controlled
by the extent to which the initial conditions on (1.5) were correlated, as, for example,
measured by the velocity correlation coefficient

C(v1,v2) =
〈v1 · v2〉

〈v1 · v1〉1/2〈v2 · v2〉1/2
. (1.6)

Here 〈·〉 denotes a statistical average. This hope was encouraged by the fact that when
ν = 0 the dynamics (1.5) conserves

∫∫
dx v1 ·v2, suggesting that the velocity correlation

set by the initial conditions might tend to persist. (Throughout this paper we identify
statistical averages with averages over the periodic domain.) As we shall see, the actual
behavior is considerably more subtle.

When ν = 0, both (1.1) and (1.5) take the general Hamiltonian form

dF

dt
= {F,H}, (1.7)

where F [ζ] is an arbitrary functional of the vorticity ζ, {·, ·} is the Poisson bracket, and
H is the Hamiltonian. The dynamics (1.1) corresponds to the Poisson bracket

{F,H} =

∫∫
dx ζ J

(
δF

δζ
,
δH

δζ

)
(1.8)

and to the Hamiltonian (1.2). The choice F = ζ yields (1.1) with ν = 0 and ψ = −δH/δζ.
The Hamiltonian (1.2) is conserved by the antisymmetry property of (1.8). The Casimirs
(1.3) are conserved for any choice of Hamiltonian.
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The coupled dynamics (1.5) corresponds to the Poisson bracket

{F,H} =

∫∫
dx ζ1 J

(
δF

δζ1
,
δH

δζ1

)
+

∫∫
dx ζ2 J

(
δF

δζ2
,
δH

δζ2

)
(1.9)

and to the Hamiltonian

H =

∫∫
dx ∇ψ1 · ∇ψ2. (1.10)

Thus (1.5) conserves the velocity correlation (1.10) and Casimirs of the form
∫∫

dx (G1(ζ1)+
G2(ζ2)). In particular, the enstrophies of the two coupled systems are separately con-
served. Thus when ν = 0 the coupled system (1.5) conserves the numerator of (1.6) but
not the denominator. In contrast, two uncoupled systems of ordinary two-dimensional
turbulence, which correspond to the bracket (1.9) and to the Hamiltonian

1

2

∫∫
dx (∇ψ1 · ∇ψ1 +∇ψ2 · ∇ψ2) , (1.11)

conserve the denominator of (1.6) but not the numerator. These differences prove critical
to our subsequent analysis.

It is possible to define a perfectly solvable dynamics of, for example, the form (1.1)
that is not Hamiltonian. That is, it is possible to imagine a dynamics of the form (1.1)
in which the streamfunction ψ depends on ζ in a well-defined manner, but in which ψ is
not the functional derivative of any functional. (This is analogous to the statement that
it is possible to define vector fields that are not the gradient of any scalar.) Such a non-
Hamiltonian system typically has no conservation law analogous to (1.2), but it could
still preserve all of the invariants (1.3) associated with the bracket (1.8). A somewhat
trivial example of such a system would be (1.1) with an arbitrarily prescribed ψ(x, y, t).
In this case ζ is simply a passive scalar. We consider more interesting examples of coupled
non-Hamiltonian systems below.

2. Equilibrium statistical mechanics

Kraichnan (1967) applied the methods of equilibrium statistical mechanics to ordi-
nary two-dimensional turbulence. (See also Kraichnan (1975), Kraichan and Montgomery
(1980), Salmon (1998) and Bouchet and Venaille (2012).) The theory applies to a numeri-
cal model—that is, to a model of (1.1) with a finite number of gridpoints or modes—that
conserves analogues of the energy (1.2) and enstrophy (1.4) when the viscosity ν = 0. If
the viscosity is switched off, then the motion in the phase space spanned by the modal
or gridpoint values of ζ is nondivergent, and the probability distribution approaches the
canonical ensemble based upon (1.2) and (1.4). (Other invariants of the form (1.3) typ-
ically do not survive the truncation in modes.) This equilibrium state, which represents
the ‘target state’ towards which the nonlinear terms in (1.1) acting by themselves would
drive the flow, corresponds to the energy spectrum

E(k) =
k

α+ βk2
. (2.1)

The ‘inverse temperatures’ α and β are determined by the requirements∫ kmax

k0

E(k) dk = E0,

∫ kmax

k0

k2E(k) dk = Z0, (2.2)

where k0 corresponds to the periodic box size, kmax is the maximum wavenumber in
the model, and E0 and Z0 are the prescribed constant values of the energy and enstro-
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phy. Interest attaches to the limit kmax → ∞ with k0, E0, Z0 held fixed. In that limit,
α/β → −k2

0 and all of the energy ‘condenses’ into the lowest wavenumber k0. The excess
enstrophy Z0 − k2

0E0 is swept out to infinite wavenumber.
The inviscid equilibrium of the coupled system (1.5) is closely analogous to Kraichnan’s

result. First we define ‘collective variables’

ψ =
1

2
(ψ1 + ψ2), τ =

1

2
(ψ1 − ψ2), (2.3)

for which the quadratic invariants take a diagonal form. In terms of ψ, τ , ζψ ≡ ∇2ψ, and
ζτ ≡ ∇2τ , the enstrophies take the form

Z1 =

∫∫
dx ζ2

1 =

∫∫
dx
(
ζ2
ψ + 2ζψζτ + ζ2

τ

)
,

Z2 =

∫∫
dx ζ2

2 =

∫∫
dx
(
ζ2
ψ − 2ζψζτ + ζ2

τ

)
, (2.4)

and the Hamiltonian (1.10) takes the form

H =

∫∫
dx ∇ψ · ∇ψ −

∫∫
dx ∇τ · ∇τ. (2.5)

By the statistical equivalence of the systems Z1 = Z2, hence
∫∫

dx ζψζτ = 0, and we
have the single enstrophy invariant

Z̄ =

∫∫
dx
(
ζ2
ψ + ζ2

τ

)
. (2.6)

Thus for quadratic invariants we need only consider (2.5) and (2.6), which are the
analogues of the energy and enstrophy in the corresponding theory of ordinary two-
dimensional turbulence. However, we note that (2.5) is proportional to the difference
between the energy associated with the ψ-mode and the energy associated associated
with the τ -mode. Again, neither of these energies is itself conserved.

The minus sign that appears in (2.5) is the only difference between the inviscid equi-
librium statistical mechanics of (1.1) and that of (1.5). The canonical ensemble corre-
sponding to (2.5) and (2.6) leads to the energy spectra

Eψ(k) =
k

α+ βk2
, Eτ (k) =

k

−α+ βk2
, (2.7)

where α is the ‘inverse temperature’ that corresponds to H, and β corresponds to Z̄. The
sign difference in the denominators corresponds to the minus sign in (2.5). The constants
α and β are determined by

H0 =

∫ kmax

k0

(Eψ(k)− Eτ (k)) dk ≡ Eψ − Eτ (2.8)

and

Z̄0 =

∫ kmax

k0

(
k2Eψ(k) + k2Eτ (k)

)
dk. (2.9)

First suppose that H0, the prescribed value of (2.5), vanishes, corresponding to initially
uncorrelated systems. Then α = 0 and the enstrophy Z̄ is equipartitioned among Fourier
modes. This corresponds to an energy spectrum of the form E(k) ≡ Eψ(k) + Eτ (k) =
C0k

−1 with the constant C0 determined by (2.9) to be C0 = 2Z̄0/(k
2
max − k2

0). Let
kmax →∞ with k0 and Z̄0 held fixed. Then the total energy E = Eψ +Eτ vanishes like
k−2
max ln kmax. In summary, as more high wavenumbers become available to the system,
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the low wavenumbers hold a smaller and smaller fraction of the total enstrophy, and the
total energy, which is not conserved, simply vanishes.

Now suppose that H0 > 0, corresponding to systems with positive initial correlation.
Again we let kmax → ∞. The analysis closely parallels the corresponding analysis of
(2.1) and (2.2). We find that (2.7)-(2.9) imply

β ∼ k2
max

(Z̄0 − k2
0H0)

,
α

β
∼ −k2

0 + 2k2
0e

−2k2maxH0/(Z̄0−k20H0). (2.10)

Let k1 be any wavenumber between k0 and kmax. From (2.10) it follows that as kmax →
∞,

Eψ =

∫ k1

k0

Eψ(k)dk → H0, Eτ =

∫ k1

k0

Eτ (k)dk → 0. (2.11)

For the correlation coefficient (1.6), we obtain

C(v1,v2) =
Eψ − Eτ
Eψ + Eτ

→ 1. (2.12)

In summary, the coupled dynamics conserves H = Eψ − Eτ . If H = 0 the system can
attain the maximum entropy state of enstrophy equipartition that requires the energy
to vanish, Eψ = Eτ = 0. If H > 0, this zero-energy state is unattainable, but enstro-
phy equipartition proceeds farthest if all of H is concentrated in Eψ and in the lowest
wavenumber k0. If H < 0, then the analysis proceeds as above, but with the symbols ψ
and τ everywhere interchanged. One concludes that all of Eτ − Eψ ends up in Eτ with
Eψ = 0 and C(v1,v2) = −1.

Inviscid numerical experiments confirm the predictions of equilibrium statistical me-
chanics: If the velocity fields are even slightly positively (negatively) correlated, then
the coupled system approaches the state of perfectly correlated (anticorrelated) velocity
fields, losing whatever energy is required. Viscous numerical experiments evolve simi-
larly to the inviscid cases. However, viscous experiments with H > 0 resemble ordinary
two-dimensional turbulence in the formation of isolated coherent structures, whereas in
experiments with H ≤ 0 the vorticity behaves like a passive scalar. We shall not present
these results here; instead we proceed to more general cases of greater interest.

Consider a ‘ring’ of N coupled systems governed by the equations

ζαt =
1

2
J(ζα, ψα−1 + ψα+1) + ν∇2ζα, α = 1, . . . , N (2.13)

with ψ0 = ψN , ψN+1 = ψ1, and N an even integer. The system (1.5) corresponds to
N = 2. When ν = 0 (2.13) is a Hamiltonian system with Hamiltonian

H =
1

2

N∑
α=1

∫∫
dx ∇ψα · ∇ψα+1 (2.14)

and a bracket equal to the obvious generalization of (1.9). As in the case N = 2, the equi-
librium statistical mechanics is most easily worked out using variables that diagonalize
the invariants. Let

ψα =

N/2−1∑
n=−N/2

ψ̂n e
i2πnα/N . (2.15)

Thus ψα and ψ̂n form a discrete Fourier transform pair. The Hamiltonian (2.14) takes
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the form

H =
∑
n

Ên cos(2πn/N), (2.16)

where

Ên =

∫∫
dx ∇ψ̂n · ∇ψ̂−n (2.17)

is the energy in Fourier mode n. The Hamiltonian (2.16) is conserved but the Ên are
not. If the N systems are statistically identical then their N enstrophies are equal and
we have the single enstrophy invariant

Z̄ =
∑
n

Ẑn, (2.18)

where

Ẑn =

∫∫
dx ∇2ψ̂n · ∇2ψ̂−n. (2.19)

Equlibrium statistical mechanics based upon (2.16) and (2.18) predicts the modal energy
spectra

Ên(k) =
k

α cos(2πn/N) + βk2
. (2.20)

When N = 1 (2.20) reduces to (2.1), and when N = 2 (2.20) reduces to (2.7). If H
vanishes then the equilibrium state is enstrophy equipartition with vanishing energy and
vanishing correlation between theN coupled systems. However, ifH > 0 then α/β → −k2

0

as kmax →∞. In this limit Ê0 =
∫
dkÊ0(k)→ H and all other Ên vanish. The velocity

fields of the N coupled systems become perfectly correlated.
In the remainder of this paper, we consider coupled systems composed of N = 3

members, for which the dynamics (2.13) takes the form

ζ1t =
1

2
J(ζ1, ψ2 + ψ3) + ν∇2ζ1,

ζ2t =
1

2
J(ζ2, ψ1 + ψ3) + ν∇2ζ2, HCM

ζ3t =
1

2
J(ζ3, ψ1 + ψ2) + ν∇2ζ3. (2.21)

We refer to (2.21) as the Hamiltonian coupled model (HCM). The case of three cou-
pled systems is interesting because it offers other interesting possibilities. Consider, for
example, the alternative dynamics

ζ1t = J(ζ1, ψ3) + ν∇2ζ1,

ζ2t = J(ζ2, ψ1) + ν∇2ζ2, NHCM

ζ3t = J(ζ3, ψ2) + ν∇2ζ3, (2.22)

in which each system’s vorticity is a advected by the streamfunction of the preceding
system only. When ν = 0 both HCM and (2.22) conserve∫∫

dx Gα(ζα), α = 1, 2, 3, (2.23)

where the Gα(·) are arbitrary functions. However, when ν = 0 HCM is a Hamiltonian
system that also conserves

H =
1

2

∫∫
dx (∇ψ1 · ∇ψ2 +∇ψ2 · ∇ψ3 +∇ψ3 · ∇ψ1) , (2.24)
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whereas (2.22) is a non-Hamiltonian system with no conservation law analogous to (2.24).
That is, there exists no H[ζ1, ζ2, ζ3] such that ψ3 = −δH/δζ1, etc. Hence we refer to
(2.22) as the non-Hamiltonian coupled model (NHCM). As a third alternative to HCM
and NHCM, we consider

ζ1t =
1

2
J(ζ2, ψ3) +

1

2
J(ζ3, ψ2) + ν∇2ζ1,

ζ2t =
1

2
J(ζ1, ψ3) +

1

2
J(ζ3, ψ1) + ν∇2ζ2, KM

ζ3t =
1

2
J(ζ1, ψ2) +

1

2
J(ζ2, ψ1) + ν∇2ζ3, (2.25)

which, like NHCM, is non-Hamiltonian. We call (2.25) the Kraichnan model (KM) be-
cause it resembles a model proposed by Kraichnan (1961, 1991) in connection with his
direct interaction approximation. When ν = 0 KM conserves the average energy,

E =
1

2

∫∫
dx (∇ψ1 · ∇ψ1 +∇ψ2 · ∇ψ2 +∇ψ3 · ∇ψ3) , (2.26)

and the average enstrophy,

Z =
1

2

∫∫
dx
(
(∇2ψ1)2 + (∇2ψ2)2 + (∇2ψ3)2

)
, (2.27)

but has no other conservation laws of the form (2.23). Thus KM has the same equilibrium
statistical mechanics as ordinary two-dimensional turbulence. The equilibrium statistical
mechanics of NHCM is enstrophy equipartition.

3. Numerical solutions

In this section we compare numerical solutions of two-dimensional turbulence governed
by (1.1) (hereafter called TDT) to solutions of HCM, NHCM, and KM. The 2π-periodic
domain is considered to be covered by n2 gridpoints corresponding to wavenumbers that
range between k0 = 1 and kmax = n/

√
2. All the solutions have the same initial energy

spectrum E(k), sharply peaked at wavenumber k = 4, with initial rms fluid velocity
urms = 1. Thus t = 2π corresponds to the time required for fluid particles to traverse
the periodic domain. We set the initial correlation between the 3 members of each of
the coupled systems HCM, NHCM and KM by random phase variations in the Fourier
coefficients.

First we consider inviscid experiments, to which the predictions of equilibrium statis-
tical mechanics should apply quantitatively. Figure 1 shows the wavenumber-dependent
analogue,

C(k) =
〈v1(k) · v2(k)〉

〈v1(k) · v1(k)〉1/2〈v2(k) · v2(k)〉1/2
, (3.1)

of (1.6) for HCM averaged over times near t = 100 in an inviscid calculation in which
n = 32 and the initial correlation C(k) = 0.5. (Note that C(k), in contrast to C defined
by (1.6), would have the same value if v were replaced by ζ.) The relatively small value of
n permits the long time integrations required to verify the statistical mechanical theory.
Also shown in Figure 1 are the analytically computed

C(k) =
k2

0

2k2 − k2
0

(3.2)

corresponding to the asymptotic limit kmax →∞, and the C(k) obtained by solving for
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Figure 1. Upper curve: The correlation C(k) between systems in an inviscid solution of HCM.
The two nearly identical, lower curves are the predictions of equilibrium statistical mechanics
as computed analytically for the case kmax →∞, and more accurately by numerical means.
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Figure 2. The correlation C(k) between systems in a viscous solution of HCM averaged over
the successive intervals t = 0 − 1, 1 − 2, . . . , 5 − 6. Darker lines correspond to later intervals.
The monotonically decreasing curve is the asymptotic prediction (3.2) of equilibrium statistical
mechanics.

α and β in the HCM equations analogous to (2.7), namely

Eψ(k) =
k

α+ βk2
, Eτ1(k) = Eτ2(k) =

k

−α/2 + βk2
, (3.3)

by a method that does not assume kmax → ∞ and accurately accounts for the discrete
distribution of the wavenumbers. Here, τ1 and τ2 are the two (degenerate) eigenmodes
besides ψ = (ψ1+ψ2+ψ3)/3 that are needed to diagonalize the quadratic form associated
with (2.24). The three curves in Figure 1 are almost indistinguishable. As predicted by
equilibrium statistical mechanics, the corresponding C(k) in inviscid solutions of NHCM
and KM (which are not shown) decay rapidly to zero at all wavenumbers. The energy
spectra (not shown) of all four dynamics also agree very closely with predictions. Thus, in
the large-t, purely inviscid limit to which the theory should apply, equilibrium statistical
mechanics offers a quantitatively accurate prediction of the numerical solutions.

Now we turn to viscous solutions, in which the viscous coefficient ν corresponds to a
sub-grid-scale viscosity. In all the solutions described, ν is taken to be a slowly varying
function of time, ν(t) = ζrms(t)∆

2, where ζrms is the rms vorticity and ∆ is the distance
between gridpoints. Figure 2 shows the correlation C(k) averaged over successive time
intervals up to t = 6 in a viscous solution of HCM with n = 1024. Darker lines correspond
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Figure 3. The vorticity ζ at t = 6 in viscous solutions of the four dynamics. In each of the
dynamics HCM, NHCM and KM, only one of the three coupled systems is shown.

to later time intervals. The initially uniform correlation C(k) = 0.5 is rapidly wiped out
in all but the most energetic wavenumbers. Subsequently C(k) → 1 in all lower k, only
gradually approaching the asymptotic prediction (3.2) of equilibrium statistical mechan-
ics, in which the energy and positive correlation are concentrated in lowest wavenumber
k0 = 1. By t = 6 the overall velocity correlation (1.6) of HCM has increased from 0.5
to 0.88. In contrast, the velocity correlations of NHCM and KM have decreased from
0.5 to time-averaged values around 0.02. In TDT and KM, which conserve energy in the
inviscid limit, the rms velocity urms at t = 6 is 0.988 and 0.982 respectively. In HCM,
for which statistical mechanics predicts the asymptotic value urms = 0.707, the rms ve-
locity has decayed from 1 to 0.752. In NHCM, for which the predicted energy vanishes
asymptotically in the inviscid case, urms = 0.585 at t = 6. However, it is in the physical-
space distribution of vorticity ζ(x, y, t) that the differences in behavior among the four
distinct dynamics are most apparent. Figure 3 shows ζ at t = 6 in one representative
member of each dynamics. At t = 6 the energy-containing scales of motion in HCM have
become almost perfectly correlated, and the vorticity field resembles that of TDT even
to the extent of exhibiting isolated coherent vortices. In contrast, the vorticity of NHCM
has the ‘fractal’ appearance of a passive scalar, and KM resembles a Gaussian random
field. In other solutions (not shown) in which C(k) = 0 initially, the correlation between
systems in HCM remains zero as predicted by equilibrium statistical mechanics, and the
vorticity fields of both HCM and NHCM resemble passive scalars at all times.

The models considered in this paper are artificially constructed models intended to
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illuminate the role of fundamental conservation laws in determining system behavior.
However, some of our models have realistic antecedents. In particular, the two-system
dynamics (1.5) is related to the dynamics of two-layer quasigeostrophic turbulence, which
corresponds to the Hamiltonian

H =
1

2

∫∫
dx

(
∇ψ1 · ∇ψ1 +∇ψ2 · ∇ψ2 +

1

2
k2
R(ψ1 − ψ2)2

)
, (3.4)

and to the bracket (1.9) with the vorticities ζ1 and ζ2 replaced by the potential vorticities
q1 = ∇2ψ1 +k2

R(ψ2−ψ1)/2 and q2 = ∇2ψ2 +k2
R(ψ1−ψ2)/2. Here kR is the wavenumber

corresponding to the deformation radius. In contrast to (1.10), the coupling between
quasigeostrophic layers arises from the available potential energy—the last term in (3.4).
The case in which the two layers have the same statistics corresponds to the case of
‘equivalent layers’ considered by Salmon (1978). The two-layer analogues of (2.7) are

Eψ(k) =
k

α+ βk2
, Eτ (k) =

k

α+ β(k2 + k2
R)
, (3.5)

where, as defined by (2.3), ψ is the ‘barotropic streamfunction’ and τ is the ‘baroclinic
streamfunction.’ In the limit kmax →∞, equilibrium statistical mechanics predicts that
α/β → −k2

0, and the correlation between layers takes the asymptotic form

C(k) =
Eψ(k)− Eτ (k)

Eψ(k) + Eτ (k)
=

k2
R

2k2 − 2k2
0 + k2

R

. (3.6)

Thus C(k) ≈ 1, corresponding to barotropic equilibrium flow, at all spatial scales larger
than the deformation radius k−1

R . For a more complete discussion see Salmon (1998).

I thank George Carnevale and three anonymous referees for valuable comments.
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