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Problem Set 6: MAE 127

due Friday, May 20, 2005

1. Carbon dioxide levels in the atmosphere have risen steadily since measurements be-
gan in the 1950s. Atmospheric CO2 concentrations seem to be growing exponentially.
The annually-averaged Keeling data are available from the UCSD data server or from
http://www-pord.ucsd.edu/∼sgille/mae127/ps6.html. Fit the data with an exponential
curve of the form:

C = x0 + x1 exp
(

t − 1900

x2

)

.

You won’t be able to solve this using a simple linear least squares fit, but you can try two
different possibilities. For option 1, assume that x0 is 290, take the natural log of both sides
of the equation, and solve it using a least-squares fit. What do you predict atmospheric CO2

levels to be in 2100?

To solve for the exponential function, we compute

log(C − x0) = log(x1) +
t − 1900

x2

.

Thus we fit using a matrix A containing a column of ones and a column of times (relative
to 1900). The algorithm is as follows:

load keeling.mat

A=[ones(size(keeling_year)) keeling_year-1900];

x=inv(A’*A)*A’*log(keeling_co2-290);

plot(keeling_year,290+exp(A*x),keeling_year,keeling_co2)

xlabel(’time’); ylabel(’atmospheric CO_2 (ppmv)’)

This produces x(1) = 1.6383 and x(2) = 0.0277, corresponding to the values x1 = exp(x(1)) =
5.1464 and x2 = 1/x(2) = 36.1081, implying a 36 year e-folding scale for CO2 growth in the
atmosphere.

If we plug in the year 2100 to these results:

290+exp(x(1)+(2100-1900)*x(2))

we predict that CO2 concentrations in the atmosphere should reach 1599.3 ppmv in 2100, a
rather sobering level that is substantially greater than double present concentrations.

For comparison it’s interesting to look at the linear fit:

x_lin = inv(A’*A)*A’*(keeling_co2-290);

hold on; plot(keeling_year,290+A*x_lin,’r’)

This produces a constant of -59.4079 and a slope of 1.3712, implying CO2 concentrations of
505 ppmv in 2100, but it’s not a very good fit to the data, as indicated in Figure 1.
2. Now consider the same least-squares fit as a nonlinear fitting problem. Solve for x0, x1, and
x2 using “fminsearch”. The Matlab function “fminsearch” requires an input cost function



Gille-MAE 127 2

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
310

320

330

340

350

360

370

380

time

at
m

os
ph

er
ic

 C
O

2 (
pp

m
v)

exponential least−squares fit

data

straight−line fit

nonlinear fit

Figure 1: Data and fits for Keeling CO2 curve.

to be minimized. You may use my example, “expfit.m”, or write your own. Based on this
fit, what do you predict atmospheric CO2 levels to be in 2100? Plot your output. Comment
on your results. Are the results from question 1 preferable to the results from the nonlinear
fit? Assuming that data are accurate to ±0.5 ppmv, what is χ2 for the two cases?

In this case, we minimize a cost function defined as:

ε =
N

∑

i=1

(

x0 + x1 exp
(

ti − 1900

x2

)

− Ci

)2

by tuning the three variables x0, x1, and x2. To do this we have to start by guessing values
for our unknowns. I tried x0 = 290, x1 = 50, x2 = 40.

x3=fminsearch(@(x) expfit(x,keeling_co2,keeling_year),[290; 50; 40]);

plot(keeling_year,x3(1)+x3(2)*exp((keeling_year-1900)/x3(3)),’c’)

This produces x0 = 256.45, x1 = 22.37, x2 = 61.58.
In the plot, this provides good agreement with the data. To quantify the fit, we can use

χ2, which is here equal to the output of “expfit” divided by the uncertainty squared:

chi2=expfit(x3,keeling_co2,keeling_year)/0.5^2.

Thus χ2 = 93.4 with N − M = 45 − 3 = 42.
For comparison the exponential least-squares fit produced a χ2 value of

chi2=sum((exp(A*x)-keeling_co2+290).^2)/0.5^2

which is 391.6. Thus the nonlinear fit appears to produce better results.
The nonlinear fit suggests that CO2 concentrations in 2100 should be
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x3(1)+x3(2)*exp((2100-1900)/x3(3))

or about 832 ppmv.

3. In problem set 4, you least-squares fit an annual cycle to one year of temperature data.
Using the same data that you used in problem set 4, now find the Fourier transform of the
data. Show that the Fourier transform produces results that are consistent with results from
your least-squares fit.

In problem set 4 we found, We least squares fitted a constant and a low-frequency cycle
corresponding to one cycle per year. Here we compute the fft for the same data:

X =fft(alpine_min);

The constant is at zero frequency, which is the first value of X, X(1) = 17973. To find the
amplitude we divide by N = 366 to find a mean of X(1)/366 = 49.1066, exactly as we found
in problem set 4.

The cosine and sine amplitudes will correspond to the real and imaginary parts of X(2).
Here X(2) = −1548.7+639.91i. We divide by N/2 to get 2X(2)/N = X(2)/183 = −8.4626+
3.4968i. Thus the cosine amplitude is −8.462 and the sine amplitude is 3.4968. These
values are similar to, but not identical to the problem set 4 solutions. The reason they are
not identical is that in problem set 4, the first data point was on day 1, while the Fourier
transform assumes that the first data point is at time 0. We can actually duplicate the shift
by multiplying by exp(−2∗π∗i/366). Then 2X(2)/N exp(−2∗π∗i/366) = −8.4013+3.6415i
which exactly matches the problem set 4 solution.

Another way to assure yourself that the results are correct is to look at the amplitude.

The total amplitude of the annual cycle is
√

<X(2)2 + =X(2)2 = |X(2)|2 = 9.16, as we
found in problem set 4.


