
1.  Introduction
Rapid sea ice retreat has been extensively observed in the Canada Basin over the past several decades (F. 
McLaughlin et al., 2011). The increased sea ice melt and river runoff that has collected toward the center of 
the anticyclonic (convergent) Beaufort Gyre (Brown et al., 2020; E. C. Carmack et al., 2016; F. A. McLaugh-
lin & Carmack, 2010; Proshutinsky et al., 2009; Wang et al., 2018; Yamamoto-Kawai et al., 2009) drive a 
30-year 1.1–1.9 psu/yr trend toward a fresher surface layer (Peralta-Ferriz & Woodgate, 2015). The addition 
of this relatively light fresh water at the surface has stabilized the upper ocean, altering ice-ocean processes, 
including wind-driven mixing, the vertical transport of heat and nutrients, and sea ice basal melt (E. Car-
mack et al., 2015; Jackson et al., 2010, 2011; 2012; Steele et al., 2011; M. Timmermans & Marshall, 2020; M. 
L. Timmermans, 2015; Toole et al., 2010).

Historically, climate models simulate a slower sea ice retreat than observed (Niederdrenk & Notz, 2018; 
Rosenblum & Eisenman, 2016; SIMIP, 2020; Stroeve et al., 2007, 2012, 2017; Winton, 2011). One possible 

Abstract  The Canada Basin has exhibited a significant trend toward a fresher surface layer and thus 
a more stratified upper-ocean over the past three decades. State-of-the-art ice-ocean models, by contrast, 
tend to simulate a surface layer that is saltier and less stratified than observed. Here, we examine decadal 
changes to seasonal processes that may contribute to this wide-reaching model bias using climate model 
simulations from the Community Earth System Model and below-ice observations from the Arctic 
Ice Dynamics Joint Experiment in 1975 and Ice Tethered Profilers in 2006–2012. In contrast to the 
observations, the models simulate salinity profiles that show relatively little variation between 1975 and 
2012. We demonstrate that this bias can be mainly attributed to unrealistically deep vertical mixing in the 
model, creating a surface layer that is saltier than observed. The results provide insight for climate model 
improvement with broad implications for Arctic sea ice and ecosystem dynamics.

Plain Language Summary  Climate models, which have been analyzed extensively to assess 
and predict current and future climate change and to inform policy, struggle to accurately simulate the 
rapid decline in Arctic sea ice. One possible source of this bias could be related to the vertical distribution 
of salt in the ocean, which controls the exchange of heat between the surface and deeper ocean. We 
compare simulations from two climate models to ocean observations collected below sea ice in the 
Canada Basin. In 1975, observations were collected by scientists living in ice camps, and in 2006–2012, 
they were obtained by automated instruments attached to sea ice. The observations indicate as much 
as six times greater surface freshening than the models between 1975 and 2006–2012. We show that the 
salt bias can be partly attributed to the models' tendency to mix fresh water from the surface deeper than 
in observations, resulting in a saltier ocean surface. The results may provide insight for climate model 
improvement that could have wide-reaching implications because the vertical distribution of salt in the 
ocean directly impacts the vertical transport of heat and nutrients.
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source of the model bias could be related to simulated upper-ocean stratification, which tends to be less 
stratified in global ice-ocean models than in observations (Holloway et al., 2007; Ilicak et al., 2016). The 
ocean stratification bias could be related to unrealistic sea ice conditions, which could result in too lit-
tle freshwater input from sea ice melt each season. Alternatively, the biases could be related to unrealis-
tic ocean processes, such as vertical diffusion (Zhang & Steele, 2007) or brine rejection schemes (Nguyen 
et al., 2009). Up until now, this stratification bias has mainly been investigated with numerical experiments 
or by comparing simulations to annual climatologies with little to no attention paid to their seasonali-
ty (Barthélemy et al., 2015; Holloway et al., 2007; Ilicak et al., 2016; Jin et al., 2012; Nguyen et al., 2009; 
Sidorenko et al., 2018; Zhang & Steele, 2007).

Here, we explore this problem by examining both sea ice conditions and ocean processes in models and ob-
servations using simulations from the two most recent generations of the Community Earth System Model 
(CESM1 and CESM2), both of which are extensively used in polar studies and in the Intergovernmental 
Panel on Climate Change (IPCC) Fifth and Sixth Assessment Reports (AR5 and AR6), and using two sets 
of year-round ocean observations collected in the Canada Basin during 1975 and 2006–2012. Our main ob-
jective is to understand what governs the seasonal salinity evolution in the models and observations in the 
Canada Basin by examining seasonal surface processes related to sea ice conditions, freshwater input, and 
vertical mixing, all of which cumulatively contribute to decadal surface freshening. Distinguishing between 
atmospheric and oceanic processes that cause surface freshening in the models and observations is critical 
for determining if model freshening mechanisms are consistent with the natural world and helps to identify 
processes that might be missing or poorly simulated in the models.

2.  Methods
We use year-round below-ice observations of ocean salinity collected in the Canada Basin, defined as the 
region enclosed by 72E  N, 80E  N, 130E  W, and 155E  W (Figure 1b), from the 1975 Arctic Ice Dynamics Joint Ex-
periment (AIDJEX) program (Maykut & McPhee, 1995; Untersteiner et al., 2007) and during 2004-present 
from the Ice-Tethered Profiler (ITP) instrumentation system (Krishfield et al., 2008; Toole et al., 2011; 2016). 
There were four occupied AIDJEX ice camps between May 1975 and April 1976 and 30 ITPs, which were 
available for 2004–2012 at the time of the analysis. The data in this study are identical to those employed by 
Rosenblum et al. (2021), who showed that June-September surface changes between the ITP and AIDJEX 
datasets are consistent with 30-year mixed-layer trends reported by Peralta-Ferriz and Woodgate (2015) us-
ing data mainly associated with low sea ice concentration in the same region. They used only quality-con-
trolled data (level 3) in the ITP archive, screened profiles to select those that include samples shallower 
than 10 m depth (as in Jackson et al., 2010), and that were collected during the period May 1 - December 31, 
which is common to both datasets. In total, 754 AIDJEX profiles during 1975 and 3391 ITP profiles during 
2006–2012 from 12 ITPs (#1, 3–6, 8, 11, 13, 18, 33, 41, and 53) satisfied these criteria, with average shallowest 
measurements of E  6 m and E  7 m, respectively (Figure 1b). Profiles were linearly interpolated onto a com-
mon 1 m vertical grid, and the shallowest values were extrapolated to  0E z  , which we take as the ice-ocean 
interface, as in the models.

To examine sea ice conditions associated with the ITP data set, we identify co-located daily sea ice con-
centrations, provided by the Passive Microwave satellite data, Version 1 (Cavalieri et  al.,  1996). Weekly, 
regional-mean sea ice concentrations associated with the AIDJEX data are provided by the Canadian Ice 
Service Digital Archive (CISDA) chart data for the western Arctic region (Tivy et al., 2011). We also examine 
estimates of the 1979–2018 effective sea ice thickness (sea ice volume per unit area) from the Pan Arctic 
Ice Ocean Modeling and Assimilation System (PIOMAS) (Schweiger et al., 2011). PIOMAS effective sea ice 
thickness was regridded to the 25-km Equal-Area Scalable Earth (EASE) grid, and data were collected from 
each grid cell residing in the Canada Basin. While several studies have shown that PIOMAS tends to under-
estimate sea ice thickness in regions of thicker ice and overestimate sea ice thickness in regions of thinner 
ice (Stroeve et al., 2014; Wang et al., 2018), the seasonality, spatial structure, distribution, and decadal trends 
of the sea ice thickness are realistically reproduced (Labe et al., 2018).

We use 30 simulations of 1970–2020 from CESM1 with historical and RCP8.5 forcing from the Large En-
semble project (Kay et al., 2015) and the first 50 CESM2 simulations from the Large Ensemble 2 project with 
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historical and SSP 3–7.0 forcing (Rodgers et al., 2021). The CESM2 data was regridded onto a   1 1E  grid to 
facilitate the analysis. CESM1 and CESM2 are run with historical forcing until 2005 and 2015, respectively. 
Both models use the Parallel Ocean Program Version 2 (POP2) model with a displaced pole horizontal grid, 
a nominal 1E  resolution, 60 vertical levels, and 10 m vertical grid spacing near the surface, although some 
of the physical parameterizations, including the K-profile parameterization (KPP) vertical ocean mixing 
scheme (Large et al., 1994), differ between the two models (Danabasoglu et al., 2020). We examine the ocean 
salinity, the effective sea ice thickness, and the sea ice concentration in each grid box within the Canada 
Basin of each simulation (Table S1 in Supporting Information S1).

3.  Results
3.1.  Upper-Ocean Salinity

The May–December average ocean salinity over the top 300 m in the models and the observations is shown 
in Figure 1. The observations indicate a significantly fresher upper ocean over the top 50 m in 2006–2012 
than in 1975, with the largest differences occurring at the surface (Figure  1a), consistent with previous 
studies. By contrast, the 1970–2020 ensemble mean shows only a modest freshening from the surface down 
to 300 m in both models (Figures 1c and 1d). This results in a simulated upper-ocean stratification that is 
weaker than in recent observations, similar to most ice-ocean coupled models.

To eliminate the possibility that regional or internal variability could explain the bias, we examine the sur-
face salinity from each observation and each grid point of each simulation during each month (Figure 2). In 
each dataset, we find a clear seasonal cycle where the surface becomes fresher in the summer and saltier in 
the fall, coinciding with seasonal sea ice evolution. In each month, we find that the models systematically 

Figure 1.  Observed salinity profiles from 1975 Arctic Ice Dynamics Joint Experiment (AIDJEX) data (blue) and 2006–
2012 Ice-Tethered Profiler (ITP) data (red). Solid line indicates the May–December average and shading indicates one 
standard deviation. (b) Map showing the Canada Basin, the locations of 1975 AIDJEX data (blue) and 2006–2012 ITP 
data (red), and the region considered for this study (black lines). (c–d) Simulated May–December ensemble-mean basin 
average salinity profiles in 1970–2020 from (c) Community Earth System Model (CESM1) and (d) CESM2. AIDJEX 
(blue) and ITP (red) observations are repeated in panels (c, d).
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simulate a 1970–2020 surface layer that is more consistent with observations in 1975 than in 2006–2012 
(Figures 2b and 2c).

Focusing on August (the lowest monthly salinity in the models; Figures 2d and 2e; Table S2 in Support-
ing Information S1), we find that CESM1 indicates a 2006–2012 August surface layer that is only 0.7 E  1.0 g/
kg fresher than in 1975, similar to CESM2 (0.7 E  0.9 g/kg). By contrast, the observations indicate an average 
3.6 E  1.0 g/kg change toward a fresher surface layer during the same time periods. As a consequence, we 
find that models are consistent with observations in 1975 but not in 2006–2012. From all simulations during 
August 2006–2012, only 1.4% of CESM1 grid cells and only 0.9% of CESM2 grid cells have a surface salinity 
that is as salty as any observation. We find similar results for other months (Figures S1 and S2 in Support-
ing Information S1) and after accounting for geographical differences between ITP and AIDJEX data (not 
shown).

Overall, Figures 1 and 2 show that the models do not simulate 1975 to 2006–2012 surface salinity change 
observed in the Canada Basin and that this bias cannot be explained by regional or internal variability pres-
ent within the models. In the remainder of this section, we consider three factors related to seasonal surface 
processes to identify sources of the surface freshening model bias.

Figure 2.  (a) Surface salinity from 1975 Arctic Ice Dynamics Joint Experiment (AIDJEX) data (blue) and 2006–2012 Ice Tethered Profiler (ITP) data (red). Solid 
line indicates the May–December average and shading indicates standard deviation. Blue and red error bars indicate one standard deviation over all grid points 
and simulations in 1975 and 2006–2012, respectively. (b–c) Simulated 1970–2020 ensemble-mean surface salinity from (b) Community Earth System Model 
(CESM1) and (c) CESM2. Distribution of August surface salinity in (d) 1975 and (e) 2006–2012 from each observation in 1975 (blue) and 2006–2012 (red), and 
from each grid point of each CESM1 (black) and CESM2 (purple) simulation of 1975 and 2006–2012 (distribution for CESM2 not shown). Solid dots and lines 
indicate mean and one standard deviation. AIDJEX (blue) and ITP (red) observations are repeated in panels (b, c).
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3.2.  Sea Ice Conditions

Seasonal changes to the Arctic Ocean surface layer are primarily driven by the seasonal melting and freez-
ing of sea ice (Lemke & Manley, 1984; McPhee & Smith, 1976; Morison & Smith, 1981; Peralta-Ferriz & 
Woodgate, 2015). In the models, the observations, and PIOMAS, we find a clear seasonal cycle and a con-
siderable decline in both summer sea ice concentration (Figures 3a–3c) and effective sea ice thickness (Fig-
ures 3d–3f). To examine the decadal changes in seasonal sea ice volume evolution, which directly impacts 
the seasonal freshwater surface flux, we compute a seasonal change (September–May) in the effective ice 
thickness in each grid box in PIOMAS and in each simulation of CESM1 and CESM2 during 1979–2018 
(Figures 3g–3i).

On average, PIOMAS, CESM1, and CESM2 indicate similar seasonal sea ice thickness changes during the 
melt season in 1979–1998 (0.9 E  0.6 m, 0.8 E  0.6 m, and 1.3 E  0.6 m, respectively), in 1999–2018 (1.1 E  0.6 m, 
1.1 E  0.6 m, and 1.5 E  0.4 m, respectively), and in 2006–2012 (1.5E  0.7 m, 1.4 E  0.6 m, and 1.5 E  0.3 m, respec-
tively). These results suggest that CESM1 and CESM2 are able to realistically simulate the seasonal sea ice 
volume evolution in the Canada Basin, consistent with previous studies (see references in Methods). This 
suggests that, while there are differences in sea ice concentration between the models and observations 
(Figures 3a–3c; Table S2 in Supporting Information S1), seasonal sea ice volume biases are unlikely to ex-
plain the surface freshening model bias (Figures 1 and 2).

Figure 3.  (a) Observed sea ice concentration co-located to 1975 Arctic Ice Dynamics Joint Experiment (AIDJEX) data (blue) and 2006–2012 Ice Tethered 
Profiler (ITP) data (red). Solid line indicates monthly mean, and shading indicates standard deviation. (b–c) Simulated 1970–2020 ensemble-mean sea ice 
concentration from (b) Community Earth System Model (CESM1) and (c) CESM2. (d–f) Effective sea ice thickness from (d) Pan Arctic Ice Ocean Modeling 
and Assimilation System (PIOMAS) and (e, f) CESM1 and CESM2 ensemble mean. (g–i) Distribution of the seasonal change of the effective sea ice thickness 
between May and September during (g) 1979–1998, (h) 1999–2018, and (i) 2006–2012 using all grid points from PIOMAS (red), and from each CESM1 (black) 
and CESM2 (purple) simulation (distribution for CESM2 not shown). Solid dots and lines indicate the mean and standard deviation. AIDJEX (blue) and ITP 
(red) observations are repeated in panels (b, c).
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3.3.  Seasonal Freshwater Storage

We next estimate the amount of fresh water stored seasonally in the upper ocean by examining the seasonal 
evolution of the observed and simulated salinity profiles, which reflects any process that drives changes to 
the upper-ocean salinity, including sea ice melt, river runoff, precipitation, or advection. Specifically, we use 
the upper-ocean seasonal freshwater content relative to May-average conditions (sFWC), given by:


 

0 May
( )

May

( , )
sFWC( ) ,Z tfw

S S t z
t dz

S� (1)

where E S is salinity, and fwE Z  indicates the vertical extent of mixing defined by  May( )fwE S Z S  , where E z and fwE Z  
are both negative. MayE S  is the May-average surface salinity, which is computed separately for each grid box 
of each year in each model simulation and is computed separately for each ITP or AIDJEX ice camp of each 
year in the observations. We compute sFWC from May–December at each grid point in each simulation of 
1970–2020 from each model and for each observation in 1975 and 2006–2012 (Figure 4). The value sFWC, 
therefore, represents the amount of fresh water necessary to explain the transition from a well-mixed May 
salinity profile ( MayE S  ) to any subsequent profile ( ( , )E S t z  ) for  fwE z Z  at a given location in the models or ob-
servations. Figure S3 in Supporting Information S1 shows examples of this calculation from single profiles.

The expression for sFWC differs from the more often used expression for freshwater content in which the 
reference salinity is set to 34.8  g/kg. Instead, we use a reference salinity that is set to the May-average 

Figure 4.  (a) Observed sFWC from 1975 Arctic Ice Dynamics Joint Experiment (AIDJEX) data (blue) and 2006–2012 Ice-Tethered Profiler (ITP) data (red). 
Solid line indicates monthly-mean and shading indicates one standard deviation. (b–c) Simulated 1970–2020 ensemble-mean sFWC from (b) Community Earth 
System Model (CESM1) and (c) CESM2. Blue and red error bars indicate one standard deviation over all grid points and simulations in 1975 and 2006–2012, 
respectively. (d–e) Distribution of August sFWC in (d) 1975 and (e) 2006–2012 from each observation in 1975 (blue) and 2006–2012 (red), and from each grid 
point of each CESM1 (black) and CESM2 (purple) simulation of 1975 and 2006–2012 (distribution for CESM2 not shown). Solid dots and lines indicate mean 
and one standard deviation. AIDJEX (blue) and ITP (red) observations are repeated in panels (b, c).
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surface salinity. This difference implies that sFWC reflects the seasonal near-surface freshwater content 
over a well-defined volume (see SI for full derivation of sFWC), which avoids errors that can arise when 
using an arbitrary reference salinity (Schauer & Losch, 2019). Furthermore, we use the same criterion for 

MayE S  in both the models and observations, allowing for a fair comparison.

In both models and observations, we find that the average sFWC increases through the summer and into 
the fall, coinciding with the summer melt season, river runoff, and the intensification of the convergent 
Beaufort Gyre circulation. In late fall and early winter, both the models and observations indicate an average 
decrease of sFWC, coinciding with brine rejection from freeze-up. As given in Section 3.1, we consider the 
distribution of the sFWC from every observation and from every grid point of every simulation in August 
1975 and 2006–2012 (Figures 4d and 4e). We find that, on average, the August sFWC is 0.4–0.5 m larger 
in the models than in the observations during both time periods (Table S2 in Supporting Information S1). 
We find similar results for other months, with the bias decreasing in fall 2006–2012 and increasing in fall 
1975 (Figures 4a–4c and S4 and S5 in Supporting Information S1). Together, this causes a smaller change in 
sFWC between 2006–2012 and 1975 in the models than in the observations.

We note that the simulated internal variability appears to be smaller in CESM2 than in CESM1 (compare 
standard deviations in Figures 2–4). This could be related to differences in climate sensitivity, which causes 
a reduced sea ice volume in CESM2 than in CESM1 (DeRepentigny et al., 2020; Figures 3b, 3c, 3e and 3f) 
and thus a reduced variability in freshwater input and surface salinity.

Overall, we find that the models appear to simulate somewhat more fresh water stored near the surface 
on seasonal timescales than observed. This suggests that, while there are differences in sFWC between the 
models and observations, insufficient seasonal freshwater input at the surface is not the likely source of the 
bias toward too little surface freshening in the model (Figures 1 and 2).

3.4.  Vertical Freshwater Distribution

Qualitatively, the average 2006–2012 seasonal salinity evolution indicates seasonal freshwater input is 
stored deeper in the models than in observations (Figure 5i). To quantify this difference, we examine the 
vertical distribution of seasonal freshwater storage in the models and observations during every month by 
rewriting the expression for sFWC as:
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where 10% 20%, , , fwE Z Z Z  is the lower bound of the depth range that encompasses 10%, 20%,…,100% of the 
sFWC. These depths are computed at each grid point of each simulation and each observation during May–
December of 1975 and 2006–2012 (Figure 5). We only include data points with positive values of sFWC, 
implying that some observed June profiles are not included in this portion of the analysis. As given in Sec-
tion 3.3, we also consider the August distribution of 90%E Z  from every observation and from every grid point 
of every simulation in 1975 and 2006–2012 (Figures 5g and 5h; Table S2 in Supporting Information S1). 

90%E Z  is closely related to the mixed-layer depth in both the models and observations from July onward, 
when sFWC is large enough to form a well-defined summer mixed layer (Figure S6 in Supporting Infor-
mation S1). We use 90%E Z  instead of the more commonly used mixed-layer depth because its value can vary 
based on its definition (Peralta-Ferriz & Woodgate, 2015) and because the precise definition of 90%E Z  is both 
physically relevant and can be calculated in the same way for both models and observations.

The vertical distribution of sFWC reveals two main discrepancies between the models and observations (Fig-
ure 5). First, we find that the fresh water is spread over a deeper range in the simulations (Aug. 90% 24E Z  ± 
2.7 m, 26 E  3.1 m in CESM1, CESM2) compared to the observations (Aug. 90% 14E Z  ± 3.7 m) in 2006–2012. 
Second, we find that the vertical distribution of sFWC remains relatively unchanged between 1975 and 
2006–2012 in the simulations (less than 1 m change in August 90%E Z  ), while the observations indicate that 
the fresh water is concentrated significantly closer to the surface in 2006–2012 than in 1975 (E  8 m change).
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Interestingly, we also find that the models do simulate a 1975 vertical distribution of sFWC consistent with 
the observations during the summer (Aug. 90% 23E Z  ± 3.5 m, 25 E  2.8 m, and 25 E  2.8 m in the observations, 
CESM1, and CESM2, respectively), similar to the 1975 surface salinity (Figures 1 and 2). However, an un-
realistically large amount of fresh water (Figure 4) is stored unrealistically deep in later months (Figure 5), 
suggesting that this is a result of compensating errors.

Overall, we find that the 2006–2012 seasonal freshwater storage has an unrealistic vertical distribution in 
the models and that the discrepancy between the models and observations cannot be explained by regional 
or internal variability present within the models (Figures 5g and 5h). Together this suggests that simulated 
vertical mixing of fresh water is inconsistent with observations in recent years and that this is a source of 
the surface freshening model bias (Figures 1 and 2).

4.  Conclusions
State-of-the-art coupled ice-ocean models struggle to accurately simulate upper-ocean stratification in 
the Canada Basin, and instead tend to simulate a surface layer that is saltier and less stratified than ob-
served (Holloway et al., 2007; Ilicak et al., 2016). The bias could be related to sea ice, atmospheric, or ocean 
processes and, until now, had only been examined using numerical experiments and annual climatolo-
gies (Barthélemy et al., 2015; Holloway et al., 2007; Ilicak et al., 2016; Jin et al., 2012; Nguyen et al., 2009; 
Sidorenko et al., 2018; Zhang & Steele, 2007). Here, we examine this question by focusing on decadal chang-
es to seasonal surface processes using observations from below-ice ocean measurements collected during 
May–December 1975 (AIDJEX) and 2006–2012 (ITPs) and in the two most recent generations of the Com-
munity Earth Systems Models (CESM1 and CESM2).

Figure 5.  (a–f) Black solid lines separating each gray shading indicate the monthly-average depths of 10% 20%, ,…, fwE Z Z Z  (Equation 2) from (a, d) observations, (b, 
e) Community Earth System Model (CESM1) ensemble-mean, and (c, f) CESM2 ensemble mean in (a–c) 1975 and (d–f) 2006–2012. Dashed lines indicate 90%E Z  
in 1975 (a–c, blue) and 2006–2012 (d–f, red). Blue and red error bars indicate one standard deviation over all grid points and simulations in 1975 and 2006–2012, 
respectively. (g–h) Distribution of August 90%E Z  in (g) 1975 and (h) 2006–2012 from each observation 1975 (blue) and 2006–2012 (red), and from each grid point 
of each CESM1 (black) and CESM2 (purple) simulation of 1975 and 2006–2012 (distribution for CESM2 not shown). Solid dots and lines indicate mean and one 
standard deviation. (i) Simulated (dashed) and observed (solid) salinity profiles averaged over May (blue) and August (red) of 2006–2012.
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We find that CESM1 and CESM2 have an upper-ocean stratification bias in 2006–2012, similar to most 
global ice-ocean models, but with an upper-ocean stratification that is fairly consistent with observations 
in 1975 (Figures 1 and 2). That is, the models fail to capture the fresh surface layer that appears in recent 
years. We show that this surface freshening model bias is likely related to the unrealistically deep mixing of 
fresh water in the models (Figure 5), rather than biases related to sea ice conditions (Figure 3) or insufficient 
seasonal freshwater input (Figure 4). This suggests that one source of the 2006–2012 ocean stratification 
bias is closely related to missing or unrealistic mixed-layer dynamics in recent years, rather than unrealistic 
sea ice conditions or seasonal freshwater input from ice melt, river-runoff, precipitation, advection, or other 
sources. These results are independent of differences in climate sensitivity and sea ice conditions between 
CESM1 and CESM2 (DeRepentigny et al., 2020; Figure 3), and also do not depend on differences in sea ice 
concentration between the models and observations (Figures S7–S8 in Supporting Information S1).

This result raises important questions as to what mechanisms must be included in climate models to sim-
ulate the decadal trend toward a shallower summer mixed layer in recent years. Previous studies have 
indicated that simulated vertical mixing is sensitive to several interconnected processes, including Ekman 
dynamics (Zhang & Steele, 2007), vertical mixing schemes (Liang & Losch, 2018), and ice-ocean momen-
tum transfer (Dewey et al., 2018; Meneghello, Marshall, Campin, et al., 2018; Meneghello, Marshall, Tim-
mermans, & Scott, 2018), and are directly linked to the representation of Atlantic Water circulation (Zhang 
& Steele, 2007). Identifying the role of each mechanism and improving their modeled representation will 
be particularly important in regions such as the Canada Basin, where the summer mixed-layer depth can be 
smaller than the vertical resolution in the models (E  10 m). This is an interesting direction for future study.

Because the upper-ocean stratification directly impacts the vertical exchange of heat, energy, and nutrients, 
these results may have important implications for Arctic ecosystem dynamics and for sea ice cover. For ex-
ample, if the unrealistically deep transport of fresh water carries heat downward and traps nutrients deeper, 
then there could be less heat available for summer sea ice melt, a weaker seasonal ice-albedo feedback, and 
reduced primary productivity. These results, therefore, highlight the need for improved parameterizations 
of upper-ocean dynamics under a rapidly changing sea ice cover.

Data Availability Statement
The AIDJEX data used in this study can be found at http://lwbin-datahub.ad.umanitoba.ca/dataset/aidjex. 
The Ice-Tethered Profiler data were collected and made available by the Ice-Tethered Profiler Program based 
at the Woods Hole Oceanographic Institution and can be found at https://www2.whoi.edu/site/itp/data/. 
All sea ice concentration data created or used during this study are openly available from the NASA National 
Snow and Ice Data Center Distributed Active Archive Center at https://doi.org/10.5067/8GQ8LZQVL0VL. 
More information on each data source is listed in the methods and references. The data on which this arti-
cle is based are fully described in Cavalieri et al. (1996); Danabasoglu et al. (2020); Krishfield et al. (2008); 
Maykut and Untersteiner  (1971); Kay et  al.  (2015); Schweiger et  al.  (2011); Tivy et  al.  (2011); Toole 
et al. (2011, 2016); Untersteiner et al. (2007).
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