22,602

Figure 1. Sketch illustrating the possibility of data
assimilation procedures overfitting the data. Heavy line
depicts the true system state, the light line the forecast state,
and the dashed line the analysis after data assimilation. The
dot represents the observation.

will have appreciable power at small scales. If this is not
altered, the analysis puts no credence in the model at smail
scales, so it “draws to the data” as in Figure 1. The remedy is
to insist that Q be red or to impose a smoothness constraint
in some other way. Dee [1991] and Jiang and Ghil [1993]
effectively reddened Q by insisting that the system noise
obey a geostrophic relation between pressure and velocity
errors. Imposing smoothness constraints is a long-standing
strategy in variational assimilation procedures [e.g., Sasaki,
1970]. Provost and Salmon [1986] dealt with the sparsity of
data by restricting the analysis to a limited set of
(trigonometric) basis functions. Removing small-scale
variability from the basis set obviously makes local
overfitting impossible. With any of these strategies, Q is
being forced to have fewer significant degrees of freedom than
its full size would allow.

The arguments presented above prompt the strategy
described in the next section. For purposes of specifying Q
and calculating the P we reduce the state space to the small
number of degrees of freedom adequate to carry what little we
know about the system noise, while maintaining enough of
the KF’s ability to use the dynamics to propagate error
information. Inter alia, this reduction ensures a satisfactory
degree of smoothness. The procedure may also be viewed as a
parameterization of the large matrices Q and P in terms of a
relatively small number of parameters. Our version of (5)
propagates these parameters in time rather than the full model
error covariance. Full covariance matrices can be reconstituted
from the parameters.

3. General Method

We seek representations of the error covariance matrices
with fewer degrees of freedom than implied by the dimension
of the model state space. We begin by finding a reduced
representation of the model state space and a reduced model to
accomplish the transitions from one update time to the next.
Similar developments are given by FMR, Xue et al. [1994],
and Y. Xue et al. (Predictability of a coupled model of ENSO
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using singular vector analysis. Part 1: Optimal growth in
seasonal background and ENSO cycles, submitted to Monthly
Weather Review, 1996; hereinafter referred to Xue et al.,
submitted manuscript, 1996). Let w be the vector of all state
space variables. For example, if the model variables are u,v,p
defined at the set of space points X, XX s respectively, then

nT.

There is no need for the different model variables to be defined
on the same grid or with the same number of points. Now
write the state space vector in terms of factors in time and
space:

w(x,0) = (u(x,0, v(x,,0), p(X,

w(x,1) = E(x) u(®). )

The equality in (9) means that the columns of the N x N
matrix E are a complete set of basis functions for the model
state space. The vector u(#) holds the amplitudes at time t of
these basis functions. There are many possible choices for the
columns of E, e.g., Fourier components for each model
variable. The important requirement for us is that the choice is
efficient in that it lets us truncate the number of columns in E
(and hence the dimension of u) to M << N without sacrificing
anything essential. We choose multivariate EOFs (MEOFs)
for the columns of E, in which case the elements of u are the
principal components (PCs). It is convenient to take the
basis set to be orthonormal; ETE = I. Because of the
truncation it is not also true that EET = L

Then since

u=E"w, (10)

left multiplying the model evolution equation (4) by E” yields

wi+1) = Aud() + ETd () +u’ 1

where

A=E™WE (12)

and u' accounts for the influence of the discarded modes at
time t on the retained ones at time t+1. As in FMR, we assume
that u' is negligible. For our sea level simulations it is easy
to make this true by retaining enough MEOFs. As appears
below, it is more problematic for error propagation.

There is a straightforward way to calculating the transition
matrix A (cf. FMR or Xue et al. (submitted manuscript, 1996)
for details). With A in hand we find the error covariances P in
the reduced representation from reduced state space versions of
(5), (6), and (2):

Pi+1) = A P4 AT+ Q(r): (13)
P¢=(1-KH) P, (14)
K=PH”(HPH+R)! (15)

While these equations are formally identical to the earlier ones
(apart from the change from ¥ to A), the meanings of the
symbols have changed. Here

Pa,f: <(uu,f _ utrue) (ua,f_ ulrue)T>

(16)

and Q is the system noise appropriate to the reduced system.
There is a relation between the new reduced mapping matrix H

and the original full state space one H
H=HTE, (17

which shows that the observational data are now approximated



