Problem Set 4: SIO 221B, Data Analysis

due Friday, November 8, 2002

1a. Use Lagrange multipliers to solve the overdetermined matrix equation \(Gm = d \), subject to the constraint that the L2 norm of \(Hm - f = 0 \) should be as close to zero as possible.

b. How does your solution to 1a above differ from the solution that you would obtain by augmenting the matrix \(G \) with the matrix \(H \) to create a revised matrix equation?

\[
\begin{pmatrix}
G \\
H
\end{pmatrix}
\begin{pmatrix}
m \\
f
\end{pmatrix}
=
\begin{pmatrix}
d \\
f
\end{pmatrix}
\]

2. Consider the standard matrix equation \(Gm = d \), where:

\[
G = \begin{pmatrix}
1 & 0 \\
0 & 1 \\
0 & 0.01
\end{pmatrix}
\]

and

\[
d = \begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}
\]

Uncertainties in the elements of \(d \) are identified as \(\sigma_i \).

a. What is the least-squares solution for \(m \) if \(\sigma_i = 0.1 \) for all \(i \)?

b. What is the (row-weighted) least-squares solution for \(m \) if \(\sigma_1 = \sigma_2 = 0.1 \) and \(\sigma_3 = 10 \)?

c. Comment on your results from cases a and b above? What would happen if \(\sigma_1 = \sigma_3 = 0.1 \) and \(\sigma_2 = 10 \)?

3. Suppose that you have temperature data at fixed depths (such as CTD bottle depths) and you would like to find a functional form to describe the vertical temperature structure in the range between 150 and 900 m depth.

a. Download the following profile data from the course web site:
 http://www-mae.ucsd.edu/~sgille/sio221b/ps4_profile.dat
 and least-squares fit a linear profile of the form \(T = m_1 + m_2z \) to the temperature data. In this data, column 3 contains depth, column 4 contains temperature, column 5 contains
salinity, and column 6 is oxygen. The particular station was collected on 25 November 1972 at 35.32°W, 30.43°S.

b. Assume that the observational error is 0.1°C at all depths. What are the estimated errors in your parameters m_i? Is the functional misfit $\langle (Gm - T)^2 \rangle$ consistent with the assumed errors in T? You can do this by computing the variable

$$\chi^2 = \frac{(Gm - T)^T (Gm - T)}{\sigma^2}$$

and checking whether χ^2 is equal to $N - M$. (More formal procedure would have you compute the complete gamma function to evaluate whether the observed value of χ^2 is plausible.)

c. Verify that the formal error bars that you have derived are consistent with error bars that would be derived using a Monte Carlo simulation. To estimate alternate errors in m_i carry out a Monte Carlo simulation using the following procedure: 1. Generate 100 or more data sets of normally distributed fake perturbations with a standard deviation equivalent to the observed data (using “randn” in Matlab, for example). 2. With each set of noise, randomly perturb the temperature data, and recompute the least-squares fit solution. 3. Compute the standard deviations of your estimates of m_i. Do your error bars differ from the error bars derived in part b?