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Coherence
When we want to know whether two time series are statistically linked, we compute correlation coeffi-

cients. Coherence provides analogous information for the Fourier transforms, telling us whether two series
are statistically linked at any specific frequency. This can be important if wethink that the records are noisy
or otherwise uncorrelated at some frequencies, but that they also contain statistically correlated signals.

To determine the frequency-space relationship between two data setsxn andyn, we first divide them
into segments and Fourier transform them, so that we have a set ofXk’s and a set ofYk’s. When we
computed spectra, we found the amplitude of eachXk and then summed over all our segments. Now we’re
going to do something slightly different. For each segment pair, we’ll compute the product ofX times the
complex conjugate ofY : XkY

∗

k . Then we’ll sum over all the segments. In Matlab this becomes

sum(X. * conj(Y),2);

This will turn out to be a complex number. The real part is called the “co-spectrum”:

c(ωk) = ℜ

N
∑

n=1

(XkY
∗

k ) (1)

and the imaginary part is called the “quadrature spectrum”

q(ωk) = ℑ

N
∑

n=1

(XkY
∗

k ). (2)

The corresponding amplitude is
√

c2(ωk) + q2(ωk). For comparison the spectra forX was:

fx(ωk) =
N

∑

n=1

XkX
∗

k , (3)

and it was always real.
The coherence resembles a correlation coefficient. It’s the amplitude squared divided by the power

spectral amplitudes for each of the two components:

C2(ωk) =
c2(ωk) + q2(ωk)

fx(ωk)fy(ωk)
(4)

It’s really important that your spectra are based on more than one segment,that is thatN exceeds 1. If that
weren’t the case, you’d just have a single realization of each spectra,and the resulting squared coherence
would be

C2(ωk) =
X(ωk)Y

∗(ωk)X
∗(ωk)Y (ωk)

X(ωk)X∗(ωk)Y (ωk)Y ∗(ωk)
= 1, (5)

which is not a terribly informative result. When it’s done properly, coherence measures how well different
segments ofx andy show the same type of relationship at a given frequency.

The phaseφ(ωk) = tan−1(−q(ωk)/c(ωk)) tells us the timing difference between the two time series.
If φ = 0, changes inx andy happen at the same time. Ifφ = π, thenx is at a peak wheny is at a trough.
And a value ofφ = π/2 or φ = −π/2 tells us that the records are a quarter cycle different.

How much confidence do we have in our results? For the coherence, we require that the squared
coherence exceed:

β = 1 − α1/(nd−1) (6)

whereα is a measure of the significance level. Ifα = 0.05 that means that there is less than a 5% chance
that random noise could have produced a coherence as high as the observed value. The number of data
segments used isnd.
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The phase error can seem a little murky. Formally, the uncertainty in the phaseis

δφ = sin−1



tα,2nd

√

√

√

√

1 − C2
xy

2ndC2
xy



 (7)

wheretα,2nd
is the “Student t distribution”.

N=length(data);
M=segment_length/2; % define this value
for n=1:floor(N/M-1)

d=data((n-1) * M+1:(n+1) * M); %select data for the nth segment
d2=data2((n-1) * M+1:(n+1) * M); %select data for the nth segment
fd(:,n)=fft(d); % compute fft
fd2(:,n)=fft(d2); % compute fft

end
sd=sum(abs(fd(1:M+1,:)).ˆ2,2)/N; % sum over all spectra ( sum over 2nd index)
sd(2:end)=sd(2:end) * 2;
sd2=sum(abs(fd2(1:M+1,:)).ˆ2,2)/N; % sum over all spectr a (sum over 2nd index)
sd2(2:end)=sd2(2:end) * 2;
cd=sum(fd(1:M+1,:). * conj(fd2(1:M+1,:)),2)/N;
cd(2:end)=cd(2:end) * 2; % since we multiplied the spectra by 2, we also

% need to multiply the cospectrum by 2

nd=floor(N/M-1);
C=abs(cd)./sqrt(sd. * sd2);
delta_C = sqrt(1-alphaˆ(1/(nd-1)));

phase = atan2(-imag(cd),real(cd));
delta_phase = asin(tinv(0.975,2 * nd) * ...

sqrt((1-C.ˆ2)./(2 * nd* C.ˆ2)));

Example: Coherence and Wave Spectra
So let’s see whether surfboard acceleration measurements show any signs of coherence. We’ll start

by comparing vertical and horizontal accelerations of the free floating accelerometer, as shown in Figure 1.
These two records have rather different spectra as shown in Figure 2. The two records are coherent, as
shown in Figure 3 with a phase difference of roughlyπ radians, implying that they are 180◦ out of phase, at
least at the frequencies at which they are actually coherent. In contrast, the vertical acceleration for the free
floating accelerometer is not coherent with vertical acceleration from the shortboard.
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Figure 1: Time series of vertical acceleration and x-axis accleration for free-floating accelerometer near
Scripps pier.
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Figure 2: Spectra for vertical andx acceleration of free-floating accelerometer near Scripps pier.
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Figure 3: (top) Coherence of vertical andx acceleration of free-floating accelerometer near Scripps pier.
(bottom) Phase difference between vertical andx acceleration components.
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surface waves near La Jolla pier:  short board vs waves
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Figure 4: (top) Coherence of vertical acceleration of free-floating accelerometer versus shortboard ac-
celerometer near Scripps pier. (bottom) Phase difference.


