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I nter preting Autocorrelation
In discrete form, the autocorrelatignis:

i (@i = T)(@in — T)
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for time separation&t = ndt, wherejt is the separation between observations. In essence, w@&'sum
elements in the numerator histelements in the denominator, soramcreases, the value 6fwill converge
to zero. Thus this is called a biased estimator. The Matlab function “xcov” witiiute this; in order to
carry out the computation in (1), use the option “coeff”. Matlab leavesidpe debate about how best
to normalize the autocorrelation. Matlab defaults to a biased estimator, and thes is@tkse. Since the
autocorrelation at large is based on fewer estimates, its uncertainty is greater. The biased estinegisr ke
the uncertain values at large lag from governing our analysis. Matlab evilpcite an unbiased estimator
using the option “unbiased”, but in this case it does not be default nomrthkzzero lag autovariance to be
one. (You can normalize by hand if necessary, although Matlab doéswetr mode to do it automatically.)
The autocorrelation becomes highly variable for large time lags bedduse is small, so few data points
are averaged, and the uncertainty in the autocorrelation scalels/Nk& — n asn increases. Usually we
use a biased estimate of the autocorrelation, but regardless of whictoarghgose, you should keep in
mind that the autocorrelation will be unreliable at large lags.

The useful information in the autocorrelation is concentrated near zerd tegautocorrelation is 1 at
zero lag, and it drops to zero (or below) with increasing time lags.

How do we interpret the autocorrelation? Let's consider three possibieas0s:

C(n) = (1)

(a) Atime series of temperatures are independent and completely randeativiefy they are like output
from a random number generator, so there is no relationship betweenmem®asts at andt + Jt.
In this case, we would expect the autocorrelation to bet2=ab but to drop to zero for all other lags.

(b) Temperatures are completely controlled by an identical sinusoidalrssasy/cle every year, so that
January of year 1 is identical to January of year 2, and so forth. We&hexpect the autocorrelation
for n = 12 to be 1, like the autocorrelation for = 0. With six months separation, at = 6 or
n = 18, we would expect temperatures to be completely anticorrelated, with an anefation of
—1.

(c) Temperatures vary slowly over months or years, but are not cyalieay predictable way. In this
case, we would expect the autocorrelation to taper gradually from 1 to Gnweitbasing lags. The
time-scale at which the autocorrelation tapers, the “decorrelation scalebevdl useful measure of
the variability in the system.

Real temperature observations often show a combination of effects &maso (b) and scenario (c).

How do we determine the decorrelation scale for our measurements? A simparméesato look for
the first zero crossing of the autocorrelation function. Once the awtdation drops to zero, the data are
no longer correlated. Any further positive wiggles are then interpretetbise.

The zero crossing is by no means the only way to estimate a decorrelation&eatg@ght alternatively
estimate a decorrelation time scale based on twice the time requir€ttéodrop tol/2. More formally we
can compute it by integrating the autocorrelation function as:

M N
N —|n
T=ngdt= ) ~ Cunbiased)dt = Y Chiasedn)ot. (2)
n=—M n=—N

In practice the results drop to zero if you sum over all possible valu€g ofstead one can vary in the
summation and look for a maximum in the decorrelation time sealormally the formal estimate far
does not differ much from the estimate based on the first zero crosaitigs lexample, the largest plausible
decorrelation scale would be 9.3 months as indicate in Figure 1.
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Fanning Island temperature decorrelation scale
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Figure 1: Decorrelation scalg; for Fanning Island temperature record, computed as a functidwn, dfie
number of points over whict'yjggedn) is summed.

Degrees of Freedom

The decorrelation scale tells us about typical scales of variability, so infam us about the physical
characteristics of our system. It is also useful for deciding how mansedegf freedom we have in a set
of measurements.

Consider a case where we measure temperature every millisecond, bheouometer has a slow
response time and takes 1000 milliseconds = 1 second to respond to chamgessult, the 1000 recorded
observations each second are all effectively the same. The autatiorrdunction will show that it takes
about a second for measurements to decorrelate =s@; 6t = 1000 ms. After 10 minutes of observation,
we would have 600,000 observations which might lead us to believe thastmmage of the mean temper-
ature should have a very samll error bay{/N = ¢/775). In reality, our data would represent only 600
independent observations. The effective number of degreeseddneNg¢t = N/ng, SO our estimated

uncertainty about the mean shoulddg, / Nggs = 0/24.5.

The effective number of degrees of freedom should also be corsidédren we compute the signifi-
cance of correlation coefficients. Thus the threshold value used tarde&ewhether a correlation coeffi-
cient is statistically significant should be

T'sig erf (8) Neff ) (3)

wheres is the significance level (e.g. 0.95). In the case of our Fanning Island énessthe total number
of data points wa$v = 480, corresponding to 40 years of monthly data, but this analysis suggestgeha
have only about 2 degrees of freedom per yearygf = 80. This translates into an increase in the 95%
significance levely;,, from 0.09 forN = 480 to 0.22 forNeﬁ = 80. In other words, if we think that
consecutive observations are strongly correlated then we have fiegezes of freedom. If we were sure
that this slow variation were an important part of the signal that we areismydye wouldn’t worry about
determining our effective number of degrees of freedom. But perbapslowly varying signal is just the
result of a random process that changes the ocean every six monttsig@al might appear correlated with
another slowly varying random signal, but for no real physical neaso



