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Interpreting Autocorrelation
In discrete form, the autocorrelationC is:

C(n) =

∑N−n
i=1

(xi − x)(xi+n − x)
∑N

i=1(xi − x)2
(1)

for time separations∆t = nδt, whereδt is the separation between observations. In essence, we sumN − n
elements in the numerator butN elements in the denominator, so asn increases, the value ofC will converge
to zero. Thus this is called a biased estimator. The Matlab function “xcov” will compute this; in order to
carry out the computation in (1), use the option “coeff”. Matlab leaves open the debate about how best
to normalize the autocorrelation. Matlab defaults to a biased estimator, and this makes sense. Since the
autocorrelation at largen is based on fewer estimates, its uncertainty is greater. The biased estimator keeps
the uncertain values at large lag from governing our analysis. Matlab will compute an unbiased estimator
using the option “unbiased”, but in this case it does not be default normalize the zero lag autovariance to be
one. (You can normalize by hand if necessary, although Matlab does nothave a mode to do it automatically.)
The autocorrelation becomes highly variable for large time lags becauseN − n is small, so few data points
are averaged, and the uncertainty in the autocorrelation scales like1/

√
N − n asn increases. Usually we

use a biased estimate of the autocorrelation, but regardless of which one you choose, you should keep in
mind that the autocorrelation will be unreliable at large lags.

The useful information in the autocorrelation is concentrated near zero lag. The autocorrelation is 1 at
zero lag, and it drops to zero (or below) with increasing time lags.

How do we interpret the autocorrelation? Let’s consider three possible scenarios:

(a) A time series of temperatures are independent and completely random. Effectively they are like output
from a random number generator, so there is no relationship between measurements att andt + δt.
In this case, we would expect the autocorrelation to be 1 att = 0 but to drop to zero for all other lags.

(b) Temperatures are completely controlled by an identical sinusoidal seasonal cycle every year, so that
January of year 1 is identical to January of year 2, and so forth. Thenwe’d expect the autocorrelation
for n = 12 to be 1, like the autocorrelation forn = 0. With six months separation, atn = 6 or
n = 18, we would expect temperatures to be completely anticorrelated, with an autocorrelation of
−1.

(c) Temperatures vary slowly over months or years, but are not cyclical in any predictable way. In this
case, we would expect the autocorrelation to taper gradually from 1 to 0 withincreasing lags. The
time-scale at which the autocorrelation tapers, the “decorrelation scale” willbe a useful measure of
the variability in the system.

Real temperature observations often show a combination of effects from scenario (b) and scenario (c).
How do we determine the decorrelation scale for our measurements? A simple measure is to look for

the first zero crossing of the autocorrelation function. Once the autocorrelation drops to zero, the data are
no longer correlated. Any further positive wiggles are then interpreted as noise.

The zero crossing is by no means the only way to estimate a decorrelation scale. We might alternatively
estimate a decorrelation time scale based on twice the time required forC to drop to1/2. More formally we
can compute it by integrating the autocorrelation function as:

τ = ndδt =
M
∑

n=−M

N − |n|
N

Cunbiased(n)δt =
N

∑

n=−N

Cbiased(n)δt. (2)

In practice the results drop to zero if you sum over all possible values ofC; instead one can varyN in the
summation and look for a maximum in the decorrelation time scaleτ . Normally the formal estimate forτ
does not differ much from the estimate based on the first zero crossing. In this example, the largest plausible
decorrelation scale would be 9.3 months as indicate in Figure 1.
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Fanning Island temperature decorrelation scale

Figure 1: Decorrelation scalend for Fanning Island temperature record, computed as a function ofN , the
number of points over whichCbiased(n) is summed.

Degrees of Freedom
The decorrelation scale tells us about typical scales of variability, so it caninform us about the physical

characteristics of our system. It is also useful for deciding how many degrees of freedom we have in a set
of measurements.

Consider a case where we measure temperature every millisecond, but ourthermometer has a slow
response time and takes 1000 milliseconds = 1 second to respond to changes. As a result, the 1000 recorded
observations each second are all effectively the same. The autocorrelation function will show that it takes
about a second for measurements to decorrelate, soτ = ndδt = 1000 ms. After 10 minutes of observation,
we would have 600,000 observations which might lead us to believe that our estimate of the mean temper-
ature should have a very samll error bar (σ/

√
N = σ/775). In reality, our data would represent only 600

independent observations. The effective number of degrees of freedomNeff = N/nd, so our estimated

uncertainty about the mean should beσ/
√

Neff = σ/24.5.
The effective number of degrees of freedom should also be considered when we compute the signifi-

cance of correlation coefficients. Thus the threshold value used to determine whether a correlation coeffi-
cient is statistically significant should be

rsig = erf−1(s)

√

2

Neff
, (3)

wheres is the significance level (e.g. 0.95). In the case of our Fanning Island time series, the total number
of data points wasN = 480, corresponding to 40 years of monthly data, but this analysis suggests that we
have only about 2 degrees of freedom per year, orNeff = 80. This translates into an increase in the 95%
significance level,rsig, from 0.09 forN = 480 to 0.22 forNeff = 80. In other words, if we think that
consecutive observations are strongly correlated then we have fewerdegrees of freedom. If we were sure
that this slow variation were an important part of the signal that we are studying, we wouldn’t worry about
determining our effective number of degrees of freedom. But perhapsour slowly varying signal is just the
result of a random process that changes the ocean every six months. Our signal might appear correlated with
another slowly varying random signal, but for no real physical reason.


