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Error propagation context:

Here’s an example where we need error propagation: In August, Bjelet al (2014) reported that
total mass losses from West Antarctica and the Antaractic Peninsula surt30 & yr-'. This was based
on West Antarctic losing 6626 Gt yr-! and the Antarctic Peninsula losing204 Gt yr-! (Shepherd et
al, 2012). How did Rye et al do their arithmetic? And is it necessarily ctitrébat’'s what we’ll focus on
today.

Propagating Errors. Scalar Products

Often the variable we want to study is not measured directly. Instead waaaldt from other mea-
sured quantities. For example, we measure the electrical conductivity ofélaeC', and from that compute
the salinity.S. With values of temperatur€ and salinityS, we compute density. Given the errors in my
raw data, how do | determine the error in the variables that | study? Whaharuncertainties in my
conclusionsError propagationis the formal mechanism for tracking errors.

Here’s an example. A simplified form of the equation of state of seawateteBdtzat:

p:po‘i'a(T_To)"i_ﬁ(S_So)' (1)

whereT and S are measured variables, andg, p,, T,, andS, are constants that we’ll assume we know
to high accuracy. We can simplify this a step further, by assuming$hat.S, and does not vary, so that
p = po + (T —T,). Then given noisy measurementsiofvith uncertaintyd, what is the uncertainty in
p?

You might guess that the errors jnshould scale likexdr. We can show this formally by using the
PDF. If T has a distributiorPr(7"), then, the mean density is:

() = /_O:O(po—l—a(T—To))PT(T) dT = po + a({T) — T). (2)
and the variance is:

o2 = var(p) = /

—00

o+ alT = T) = () Pr(T)dT = [ [a(T ~ (T))* Pr(T)dT = a%of.
©

Since the standard deviation is the square root of the variapce,aor.

Propagating Errors: Addition

Now what happens if our computed quantity depends on more than onemmavatiable? We will
again look at the PDF in order to figure out what to expect for the vagiaBonsidep = p, + o(T — T,) +
B(S — S,), where now botl{” and.S are measured, noisy variables.

= [ [l alT =T+ 88— 8) — (9 PrT) AT Ps(S)dS (@
_ / / )+ B(S — (S)]? Pp(T) dT Ps(S) dS (5)
= %0} + 0% + / / 20B(T — (T))(S — (S))Pr(T) dT Ps(S) dS ®)
= o202+ f20% + 208 / T))Py(T) dT / — (S))Ps(S) dS 7)
— P+ o} (8)

since the integrals of the fori*>_(T" — (T')) Pr(T) dT are zero. Thus the squared error is the sum of the
squares of each of the summed components.
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We can easily extend this to sum an arbitrary number of values. As theldenttaheorem implies,
if y=1/NY>N, 2;, theno, = 0,./V/'N.

Propagating Errors. General rules

What happens if we are computing a nonlinear quantity that might be a furaftiseveral different
variables. For example, the full official UNESCO equation of state fositieof sea water involves poly-
nomial termsyp = ag + a1T + asT? + azT? + asT* + asT® + byS + b1 TS + b TS + b3 T3S + b, T4S +
c0S3/% + 1 T'S3/? + ¢oT2S53/2 + dyS2. How do we deal with uncertainties i and.S here?

Let's consider a simple casg:= z2, where | have a measurementwith an associated uncertainty
dx,, as indicated in Figure 1. What's the uncertainty/thAs Figure 1 indicates, for a given small deviation
in x, the resulting deviation iy will depend on the local slope gfas a function ofc. Since the derivative
of y in terms ofx tells us the slope, our uncertainty can be calculated as:

0y(z,)
D Op- 9)

oy = Y(wo + 0x) — y(z0) =

(Formally, we can think of this as a Taylor expansiory@boutz,.) Thus our uncertainty ig%éx.

What happens for cases such as the density of sea water, wherenoputed quantity depends on
multiple variables? In this case we need to sum the errors for each posaitable. Thus if we want to
calculateg as a function ofr, ..., z, then

rom (%) e (%) w0)

So as an example, if = zy, then

0 2 15) 2
”qZV (ame) + (Gaew) = riei + o3 (11)

Error propagation depends on an assumption that the errors are smalbpgons from the measured
guantities and that errors of independent variables are uncorrelHtednethod assumes that we can lin-
earize our errors (by taking only a first derivative) about our measants. If our measurement errors were
large, then the errors estimated for our final results might also be larg#.labk at this more carefully a
little later.

Examining Assumptionsin Error Estimates

Correlated Errors

Our guidelines for propagating errors assume that errors in each radasriable are uncorrelated.
What happens if the errors are correlated? For example, we might fintethperature and salinity mea-
surements made from the same electronics package tend to suffer from sirolidems. To deal with
correlated errors, ideally we should derive a joint probability densitgtian for all of the variables. We
won't explore this in detail here.

Non-Gaussian Errors

We tend to assume that our uncertainties have a Gaussian distribution.d$éslatption fails, then the
uncertainties of our computed quantities may or may not be Gaussian.

Suppose we measure wind velocities, which tend to have a double expbdittiaution. (Here we’'ll
do tests using a random number generator to create a 128 by 1000 elertrentvittaa double exponential
distribution.) Then we average the data in groups of 1, 2, 4, or 128 elenWhttt do we expect? Figure 2
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shows PDFs for these 4 cases. First, since we're averaging, thesashould decrease likgN. This

is the case. The original “data” has a variance of 1. The 2-point gesrhave a variance af/v/2, the
4-point averages have a varince of 1/2, and the 128-point avehayesa variance of 0.0894, compared
with 1/1/128 = 0.0884.

Second, following the central limit theorem, we expect that as we average and more data, the
PDF should become progressively more Gaussian. This effect is pariyoobvious if we look at the PDFs
on a logarithmic scale as in Figure 3. A double exponential PDF has a distamauiar shape on a log
scale. Even the PDF of two data points averaged together is more rouraetitiéhPDF of the raw data.

Finally, since the data are non-Gaussian, we cannot assume that tlagg'lah of the same statistical
properties as Gaussian data. For example, in a Gaussian distributionf @8%bservations are withif: 1o
of the mean. For the double exponential 88% are withiar, 97% within+20 and> 99% within +30.
Thus in theory the interpretation of the standard deviation should changavasage progressively more
and more data. (At this point, in practice people typically ignore the fact tleiit dlata are non-Gaussian
and assume that the Gaussian interpretation of a standard deviation applies.)

Nonlinear Effects

Our error propagation procedure is also built on an assumption thas em®essentially linear. How
well does this work?

As an example, let’s try to estimate the errorip- atar(z/y), given thatz has an uncertainty, and
y has an uncertainty,. According to our rule, the uncertainty inis

o’ = ((3,2)2U§+<69z>202:a;23/2<@%+%3> (12)
ox 8y Y (xQ + y2>2 x2 y2
Algebraically this is a lot to track, but more importantly, when we plot estimatextsein > for values ofx
andy between 0 and 1, the errors are ill-behaved whem y is zero. Figure 4 shows thatvaries rapidly
near the origin, so small errors inor y can result in big errors in. Moreover, since: is an angle, the
largest possible errors inare+.
We might expect our propagation formula to have trouble, so we can clie@kror propagation proce-

dure using a Monte Carlo method. To do this, we will add small, normally distribatedbm perturbations
to our estimates of andy. For example, to add noise iousing Matlab we’'d say:

del t a=0. 01;
x=(-1:0.005: 1) rones(1, 401);
X_perturbed=x+del t axrandn(si ze(x));

(The function “randn” is a random number generator that producemsaily distributed random numbers
with mean zero and standard deviation 1; the function “rand” producera numbers that are uniformly
distributed between 0 and 1.) We repeat the procedure a bunch of timespierigaps 100 or 1000 realiza-
tions, and for each realization we computeThen we can compute statistics on our ensemble of values of
Z.

Wheno, ando, are small,o, is estimated without difficulty, as shown in the left panel of Figure 5,
which compares results from the Monte Carlo simulation with results from propagation. But whenr
andy are small and their uncertainties are large, error propagation giveswsiable estimate af,. The
errors estimated through error propagation are also problematic near thagifitions iny and in particular
near the origin, where error propagation vastly over estimates the trare &rshown in Figure 6. Thus,
when we have doubts about the results of error propagation (begausalculations are nonlinear and our
errors are large, or because our errors are non-Gaussiargaudeethe algebra required to propagate errors
is unwieldy), we can always try a Monte Carlo approach to estimate ourtaintées. Monte Carlo methods
depend on assumptions, but sometimes the assumptions are easier to trgek Msinte Carlo approach
than a conventional statistical error propagation approach. Monte gastoaches are also computationally
intensive.
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Material on this handout from MAE 127, lectures 8 and 9, Spring 2005.
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Figure 1. Example of uncertainty estimates for a parabola. Light blue stragdical lines indicate position
of z, andz, + J,,. Horizontal lines show corresponding differencen,) andy(z,+¢,,). Magenta lines
show that ify has a steeper slope, then the difference betweéep) andy(x, + 6., ) is greater, implying
greater uncertainty.
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Figure 2: (left) Probability density function for 128,000 random elements avitdlouble exponential dis-
tribution and variance 1, (second from left) PDF for same data aveliagers, (third from left) PDF for
same data averaged in quadruples, (right) PDF for same data averagedps of 128 points.
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Figure 3: Same as Figure 2 but plotted with log scale/fais.
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Figure 4: Plot of: = atar(z/y), with y = 0.005.
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Figure 5: Uncertainties in = atar(z/y) as a function ofc, with y = —0.13, for (left) o, = 0, = 0.01 and
(right)o, = 0y = 0.1.

x:70.13;ax:ay:0.1 x:O.U;ax:Uy:O.l
) J====a T B
error propagation 18l error propagation 1
. o |
6 |
\
d I
2 JAN
m
91 -0.8 -0.6 -0.4 -0.2 ) 0.2 0.4 0.6 08 1 O1 0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Y y
Figure 6: Uncertainties in = atar(z/y) as a function oy with o, = o, = 0.1 (left) atz = —0.13 and

(right) atz = 0.0.



