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Figure 1: Sample data matrix, with missing data points marked with circles.

Empirical Orthogonal Functions with Missing Data
Empirical orthogonal functions are no problem to compute when you have a complete grid of data in

time and space, but what happens when some data points are missing? The “EOFs with Missing Data”
project is designed to address this concern. The written project summary can be a bit confusing, particularly
because it’s sometimes hard to distinguish between time and space in EOF calculations. Let’s try to clarify
what the project requires.

First, consider what happens when you have a complete L×N data matrix D. Here L represents time
and N represents space. One standard way to compute EOFs would be to determine a covariance matrix,
C:

C =
DTD

L
, (1)

which is an N×N matrix, representing time time averages of the data values at each point in space, covaried
with data at each other point in space. If the time series at position xi is identified as di, then

Cij = 〈didT
j 〉 =

1
L

L∑
l=1

di(tl)dj(tl). (2)

C is a square-symmetric matrix, and its eigenvectors ei represent the EOF spatial modes. Here tl is used
to represent the lth element of the data time series. Temporal modes corresponding to ei are determined by
projecting the data onto the spatial modes. Thus the ith temporal mode is

ai
T = DTei. (3)

In other words, ai is an L element vector. In matrix we can write

A = DE, (4)

where the columns of A are temporal modes and columns of E are spatial modes.
Now what changes if we have missing data? Figure 1 depicts a sample data matrix with missing

data points marked with circles. Even with a few missing data, we can still compute a covariance matrix
C. Instead of computing time-averaged covariances for L data-data pairs, we’ll need to compute them for
L−m data pairs, taking into account the number of data that are actually available. Thus

Cij = 〈didT
j 〉 =

1
L−m

L−m∑
l=1

d̃i(tl)d̃j(tl), (5)
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where d̃i represents a reduced data vector in which data elements aren’t considered if they are missing.
Despite the missing data, C can still be a good representation of the covariance matrix, and we can still
compute eigenvectors ei.

Our challenge comes in determining ai if some of the data are missing. If you simply try to compute
A = DE, then what happens to the elements of ei for which you have no corresponding data? As a first
guess you could try leaving out the missing data elements. Thus to compute a best guess of ai(tl), you could
try

ai(tl) = d̃(tl)
T
ẽi, (6)

where both the data vector at time tl and the i’th eigenmode have elements removed to account for missing
data. The problem in this case is that once we reduce the size of our data record our ei are no longer
orthogonal, so it’s possible that we’re getting a poor representation of our true temporal modes. A fix for
this is to allow our temporal mode to be a linear combination of the projections into multiple different modes.
Thus our best estimate of a can be written

âi(tl) =
N∑

i=1

(bid̃(tl)
T
ẽi), (7)

where bi is a coefficient that let’s us determine how much of each modal solution to include.
The project description advises you to define a time-varying cost function of the form

ε(t) = 〈[âi(t)− ai(t)]
2〉 (8)

and to minimize it to obtain
b =

(
ẼT 〈d̃d̃T 〉Ẽ

)−1
ẼT 〈d̃dT〉ei. (9)

Sorting this out is left as an exercise.
The major challenge is to decide how to define the reduced covariance matrices 〈d̃d̃T 〉 and 〈d̃dT 〉. The

project description explains that the first covariance has deleted rows and columns corresponding to missing
data (so it should by N − n × N − n in size). The second has deleted rows but not columns (so should be
N − n×N . How do you compute these?

One option would be to remove all rows and columns with missing data from the original data matrix D.
In examples where very few data were missing, that might be a viable approach, but in typical oceanographic
examples, where nearly every point in space has missing data at some point in time (and vice versa), that
would result in an empty covariance matrix. Instead, we need to compute the covariance matrix more
selectively.

Let’s think about what we’re trying to derive. Our problem came about because at time tl, our data
vector had missing values and was incomplete. At time tl+1, our data sampling problems could be com-
pletely different. So let’s compute a different covariance matrix, and a different solution for b for each time
tl. Figure 2 shows a blue arrow highlighting the first point in time. At time t1, data are available at every
point in the space domain, so we have no problem computing a temporal mode amplitude from the available
information. In this case we remove no data from our data matrix, d̃ = d, and Ẽ = E, and b is equivalent
to the identity matrix.

Now consider the case shown in Figure 3. At time t4, no observations are available from the 4th spatial
position. Thus, we need to remove the 4th column from our data matrix before computing the reduced size
data-data covariance matrix, 〈d̃d̃T 〉. Or perhaps more efficiently, we could simply remove the 4th row and
column from the original covariance matrix C. More generally, this means that our reduced state C̃ should
be dimensioned N − n × N − n. For the covariance matrix defined as 〈d̃dT 〉, we remove the 4th column
from the data matrix, but multiply it by the original data matrix to determine a covariance matrix. This
is equivalent to removing the 4th row from C without changing any of the columns. Ultimately, despite
confusing notation, the calculation should be straightforward.
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Figure 2: Sample data set with time t1 highlighted. No data are missing at time t1, so the corresponding
covariance matrix is the full covariance matrix.

Figure 3: Sample data set with time t4 highlighted. Data are missing at time t4, and the corresponding
covariance matrix will need to leave out the spatial positions corresponding to these missing data.


