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Figure 1: Empirical probability density functions for (left) eastward wind velocity, (center) northward wind
velocity, (right) wind speed from the National Centers for Environmental Prediction reanalysis for the year
2000 for a grid point located approximately at San Diego.

Probability Density Functions
Histograms are easy to plot, but they aren’t universal in character, soif we want to take a more general

view of our data, we need to plot the probability density function or PDF.

Formal Definitions
PDFs tells us the probability of observing a value within a specific range. IfP is the PDF,P (x)dx is

the probability of observing a value betweenx andx + dx. This notation can be a little confusing, but it has
several important features. The pdf has no dependence on bin width ortotal sample size. It lets us determine
the probability of observing a value in any arbitrary range:

Prob[x1 < x < x2] =

∫ x2

x1

P (x)dx. (1)

Accordingly, the probability of observing a valuex between−∞ and+∞ is clearly 100% or 1. Thus,

Prob[−∞ < x < ∞] =

∫

∞

−∞

P (x)dx = 1. (2)

Thecumulative distribution functionC(x) is the probability of observing a value less thanx. It can be
computed by integrating the pdf.

C(x) =

∫ x

−∞

P (x′)dx′. (3)

C(x) is 0 whenx approaches minus infinity, indicating that there’s a negligibly small chance ofhaving an
infinitely small value ofx, and it is 1 whenx goes to plus infinity, which says that there is a 100% chance
of observing some value. The midpoint, whereC(x) = 0.5 is the median.

Practical Considerations
Once you’ve collected data and plotted a histogram, how do you transform this into a pdf. If histogram

bin i containsni points, then the fractionni/N will tell you the probability that an observation appears in
that bin. We also need to divide by the bin width∆x, so that the pdf will integrate to one. Thus the empirical
pdf has bins of heightni/(N∆x). Figure 1 shows sample pdfs for wind data.

Observational data often haveGaussianor normal distributions—that’s the classic bell-shaped curve
that professors sometimes use to fix grades—and most statistical theory assumes that quantities are normally
distributed, with

P (x) =
1

σ
√

2π
exp

[

− x2

2σ2

]

. (4)
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Figure 2: Examples of probability density functions with unit mean and variance.

whereσ is the standard deviation. The corresponding cumulative distribution function is the error function.
These analytic forms are used to derive much of the basic statistical theory that underlies data analysis.

However, other forms of pdfs often appear in observations. Figure 2 shows some common sample
pdfs. Velocities, both in the ocean and in the atmosphere, sometimes appear more double exponential than
Gaussian.

P (x) =
1

σ
√

2
exp

[

−|x|
√

2

σ

]

. (5)

Speeds, since they are always positive, roughly follow a Rayleigh distribution (not shown but much like the
log normal distribution). Wind directions can be nearly a uniform distribution in cases where the wind is
equally likely to blow in any direction between 0 and2π.

Do two distributions differ?
PDFs are often used only as a concept to help teach statistics and to help explain the concepts of mean,

variance, skewness, and kurtosis. But it’s natural to ask how you canuse them not only as a tool to help you
learn about statistics, but also as a tool to help you learn about the ocean.

One key question is to ask whether PDFs in two regions are the same or different. In other words, what
is the probability that two random sets of data were drawn from the same underlying distribution.Numerical
Recipesprovides a cogent description of this topic.

One strategy is to use a Kolmogorov-Smirnov test, in which you compute the maximumseparationD
between the empirical cumulative distribution function and either a known (theoretical or analytic) cumu-
lative distribution function or else a second empirical cumulative distribution function. In essence, if the
difference is small, the PDFs are potentially drawn from the same data set. If the difference is large, the data
are inconsistent with the null hypothesis that the data come from the same distribution. The trick is to decide
what represents a large difference, and that’s what the Kolmogorov-Smirnov statistic aims to provide.Nu-
merical Recipesexplains how to compute this, and Matlab has a usable function, so I won’t gointo it here.
However, a few comments are in order. The Kolmogorov-Smirnov test has areputation for always failing.
That’s partly because we often have a poor estimate of the number of degrees of freedomNeff in our data.
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If Neff is less thanN , the number of data points, then we’ll set the wrong standard for the test. You might
imagine that you could fix the K-S test by simply pluggingNeff into the equations, but that doesn’t work,
because the correlated data are smoothly varying. You’re better off decimating the data to yield a number of
samples consistentN consistent withNeff .

A second strategy is to use aχ2 test to evaluate your empirical PDFs. For comparisons of observed
with theoretical PDFs, theχ2 statistic is

χ2 =
∑

i

(Ni − ni)
2

ni

, (6)

whereNi is the observed number of events in bini, andni is the theoretical or expected number of events
in bin i. For comparisons between two distributions,

χ2 =
∑

i

(Ni − Mi)
2

Ni + Mi

, (7)

whereNi andMi are each observed numbers of events for bini. The values ofχ2 are evaluated using theχ2

probability functionQ(χ2|ν), whereν is the number of bins (or the number of bins minus one, depending
on normalization).

Extreme events
If you’re looking at PDFs, you might also want to think about the stochasticdifferential equation that

describes the evolution of the PDF. Consider a system that follows the equation

dx

dt
= A(x) + B(x)η, (8)

wherex is a state vector,A(x) describes the drift of the system,η is noise, andB(x) describes how the
noise depends on the state vectorx. The Fokker-Planck equation that describes the evolution of the PDF of
this system is

∂p(x, t)

∂t
= −

∑

i

∂

∂xi

Aip(x, t) +
1

2

∑

i,j

∂2

∂xi∂xj

(BB
T )ijp(x, t). (9)

Without worrying about the details of the Fokker-Planck equation, you can use still ask about the driftA(x)
and the matrixB. In basic terms, you can estimate them:

A(x) = = lim
∆t→0

1

∆t
(X(t + δt) − X(t)) (10)

B(x)BT(x) = = lim
∆t→0

1

∆t
(|X(t + δt) − X(t)|)(|X(t + δt) − X(t)|)T. (11)

For a single time series, this means that you’ll bin average as a function ofx. If B(x) turns out to be constant
as a function ofx, this will tell you that noise is additive, which is what we typically assume. But ifB(x) is
not constant, that may be a sign of multiplicative noise—in other words, the amplitude ofη depends on the
state of the system. That has important implications for how we think about physical systems.

Another interesting test is to plot the kurtosis of your data as a function skewness. This too can yield
some perspective on the multiplicative character of noise implicit in observations. For more on this topic,
you can consult the textbook by Gardiner (Handbook of Stochastic Methods for Physics, Chemistry and the
Natural Science). Philip Sura (now at Florida State University) has written a number of papers that explore
stochastic methods as applied to oceanographic data.


