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Propagating Errors: Scalar Products
Often the variable we want to study is not measured directly. Instead we calculate it from other mea-

sured quantities. For example, we measure the electrical conductivity of theoceanC, and from that compute
the salinityS. With values of temperatureT and salinityS, we compute densityρ. Given the errors in my
raw data, how do I determine the error in the variables that I study? What are the uncertainties in my
conclusions?Error propagationis the formal mechanism for tracking errors.

Here’s an example. A simplified form of the equation of state of seawater dictates that:

ρ = ρo + α(T − To) + β(S − So). (1)

whereT andS are measured variables, andα, β, ρo, To, andSo are constants that we’ll assume we know
to high accuracy. We can simplify this a step further, by assuming thatS = So and does not vary, so that
ρ = ρo + α(T − To). Then given noisy measurements ofT with uncertaintyδT , what is the uncertainty in
ρ?

You might guess that the errors inρ should scale likeαδT . We can show this formally by using the
PDF. If T has a distributionPT (T ), then, the mean density is:

〈ρ〉 =

∫

∞

−∞

(ρo + α(T − To))PT (T ) dT = ρo + α(〈T 〉 − To). (2)

and the variance is:

σ2
ρ = var(ρ) =

∫

∞

−∞

[(ρo + α(T − To)) − 〈ρ〉]2 PT (T ) dT =

∫

∞

−∞

[α(T − 〈T 〉)]2 PT (T ) dT = α2σ2
T .

(3)
Since the standard deviation is the square root of the variance,σρ = ασT .

Propagating Errors: Addition
Now what happens if our computed quantity depends on more than one random variable? We will

again look at the PDF in order to figure out what to expect for the variance. Considerρ = ρo +α(T −To)+
β(S − So), where now bothT andS are measured, noisy variables.

σ2
ρ =

∫

∞

−∞

∫

∞

−∞

[(ρo + α(T − To) + β(S − So)) − 〈ρ〉]2 PT (T ) dT PS(S) dS (4)

=

∫

∞

−∞

∫

∞

−∞

[α(T − 〈T 〉) + β(S − 〈S〉)]2 PT (T ) dT PS(S) dS (5)

= α2σ2
T + β2σ2

S +

∫

∞

−∞

∫

∞

−∞

2αβ(T − 〈T 〉)(S − 〈S〉)PT (T ) dT PS(S) dS (6)

= α2σ2
T + β2σ2

S + 2αβ

∫

∞

−∞

(T − 〈T 〉)PT (T ) dT

∫

∞

−∞

(S − 〈S〉)PS(S) dS (7)

= α2σ2
T + β2σ2

S (8)

since the integrals of the form
∫

∞

−∞
(T − 〈T 〉)PT (T ) dT are zero. Thus the squared error is the sum of the

squares of each of the summed components.
We can easily extend this to sum an arbitrary number of values. As the central limit theorem implies,

if y = 1/N
∑N

i=1 xi, thenσy = σx/
√

N .

Propagating Errors: General rules
What happens if we are computing a nonlinear quantity that might be a functionof several different

variables. For example, the full official UNESCO equation of state for density of sea water involves poly-
nomial terms:ρ = a0 + a1T + a2T

2 + a3T
3 + a4T

4 + a5T
5 + b0S + b1TS + b2T

2S + b3T
3S + b4T

4S +
c0S

3/2 + c1TS3/2 + c2T
2S3/2 + d0S

2. How do we deal with uncertainties inT andS here?
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Let’s consider a simple case:y = x2, where I have a measurementxo with an associated uncertainty
δxo, as indicated in Figure 1. What’s the uncertainty iny? As Figure 1 indicates, for a given small deviation
in x, the resulting deviation iny will depend on the local slope ofy as a function ofx. Since the derivative
of y in terms ofx tells us the slope, our uncertainty can be calculated as:

δy = y(xo + δx) − y(xo) =
∂y(xo)

∂x
δx. (9)

(Formally, we can think of this as a Taylor expansion ofy aboutxo.) Thus our uncertainty is∂y(xi)
∂x δx.

What happens for cases such as the density of sea water, where our computed quantity depends on
multiple variables? In this case we need to sum the errors for each possible variable. Thus if we want to
calculateq as a function ofx, ..., z, then

σq =

√

(

∂q

∂x
σx

)2

+ ... +

(

∂q

∂z
σz

)2

(10)

So as an example, ifq = xy, then

σq =

√

(

∂q

∂x
σx

)2

+

(

∂q

∂y
σy

)2

=
√

x2σ2
y + y2σ2

x (11)

Error propagation depends on an assumption that the errors are small perturbations from the measured
quantities and that errors of independent variables are uncorrelated.The method assumes that we can lin-
earize our errors (by taking only a first derivative) about our measurements. If our measurement errors were
large, then the errors estimated for our final results might also be large. We’ll look at this more carefully a
little later.

Examining Assumptions in Error Estimates

Correlated Errors
Our guidelines for propagating errors assume that errors in each measured variable are uncorrelated.

What happens if the errors are correlated? For example, we might find that temperature and salinity mea-
surements made from the same electronics package tend to suffer from similarproblems. To deal with
correlated errors, ideally we should derive a joint probability density function for all of the variables. We
won’t explore this in detail here.

Non-Gaussian Errors
We tend to assume that our uncertainties have a Gaussian distribution. If thatassumption fails, then the

uncertainties of our computed quantities may or may not be Gaussian.
Suppose we measure wind velocities, which tend to have a double exponential distribution. (Here we’ll

do tests using a random number generator to create a 128 by 1000 element matrix with a double exponential
distribution.) Then we average the data in groups of 1, 2, 4, or 128 elements. What do we expect? Figure 2
shows PDFs for these 4 cases. First, since we’re averaging, the variance should decrease like

√
N . This

is the case. The original “data” has a variance of 1. The 2-point averages have a variance of1/
√

2, the
4-point averages have a varince of 1/2, and the 128-point averageshave a variance of 0.0894, compared
with 1/

√
128 = 0.0884.

Second, following the central limit theorem, we expect that as we average more and more data, the
PDF should become progressively more Gaussian. This effect is particularly obvious if we look at the PDFs
on a logarithmic scale as in Figure 3. A double exponential PDF has a distinct triangular shape on a log
scale. Even the PDF of two data points averaged together is more rounded than the PDF of the raw data.

Finally, since the data are non-Gaussian, we cannot assume that they’ll have all of the same statistical
properties as Gaussian data. For example, in a Gaussian distribution, 68% of all observations are within±1σ
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of the mean. For the double exponential 88% are within±1σ, 97% within±2σ and> 99% within ±3σ.
Thus in theory the interpretation of the standard deviation should change asI average progressively more
and more data. (At this point, in practice people typically ignore the fact that their data are non-Gaussian
and assume that the Gaussian interpretation of a standard deviation applies.)

Nonlinear Effects
Our error propagation procedure is also built on an assumption that errors are essentially linear. How

well does this work?
As an example, let’s try to estimate the error inz = atan(x/y), given thatx has an uncertaintyσx and

y has an uncertaintyσy. According to our rule, the uncertainty inz is

σ2
z =

(

∂z

∂x

)2

σ2
x +

(

∂z

∂y

)2

σ2
y =

x2y2

(x2 + y2)2

(

σ2
x

x2
+

σ2
y

y2

)

(12)

Algebraically this is a lot to track, but more importantly, when we plot estimated errors inz for values ofx
andy between 0 and 1, the errors are ill-behaved whenx or y is zero. Figure 4 shows thatz varies rapidly
near the origin, so small errors inx or y can result in big errors inz. Moreover, sincez is an angle, the
largest possible errors inz are±π.

We might expect our propagation formula to have trouble, so we can checkour error propagation proce-
dure using a Monte Carlo method. To do this, we will add small, normally distributedrandom perturbations
to our estimates ofx andy. For example, to add noise tox using Matlab we’d say:

delta=0.01;
x=(-1:0.005:1)’*ones(1,401);
x_perturbed=x+delta*randn(size(x));

(The function “randn” is a random number generator that produces normally distributed random numbers
with mean zero and standard deviation 1; the function “rand” produces random numbers that are uniformly
distributed between 0 and 1.) We repeat the procedure a bunch of times to get perhaps 100 or 1000 realiza-
tions, and for each realization we computez. Then we can compute statistics on our ensemble of values of
z.

Whenσx andσy are small,σz is estimated without difficulty, as shown in the left panel of Figure 5,
which compares results from the Monte Carlo simulation with results from errorpropagation. But whenx
andy are small and their uncertainties are large, error propagation gives us an unreliable estimate ofσz. The
errors estimated through error propagation are also problematic near the for variations iny and in particular
near the origin, where error propagation vastly over estimates the true error, as shown in Figure 6. Thus,
when we have doubts about the results of error propagation (becauseour calculations are nonlinear and our
errors are large, or because our errors are non-Gaussian, or because the algebra required to propagate errors
is unwieldy), we can always try a Monte Carlo approach to estimate our uncertainties. Monte Carlo methods
depend on assumptions, but sometimes the assumptions are easier to track using a Monte Carlo approach
than a conventional statistical error propagation approach. Monte Carloapproaches are also computationally
intensive.

Material on this handout from MAE 127, lectures 8 and 9, Spring 2005.
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Figure 1: Example of uncertainty estimates for a parabola. Light blue straight vertical lines indicate position
of xo andxo +δxo

. Horizontal lines show corresponding difference iny(xo) andy(xo +δxo
). Magenta lines

show that ify has a steeper slope, then the difference betweeny(xo) andy(xo + δxo
) is greater, implying

greater uncertainty.
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Figure 2: (left) Probability density function for 128,000 random elements witha double exponential dis-
tribution and variance 1, (second from left) PDF for same data averagedin pairs, (third from left) PDF for
same data averaged in quadruples, (right) PDF for same data averaged ingroups of 128 points.
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Figure 3: Same as Figure 2 but plotted with log scale fory-axis.
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Figure 4: Plot ofz = atan(x/y), with y = 0.005.
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Figure 5: Uncertainties inz = atan(x/y) as a function ofx, with y = −0.13, for (left) σx = σy = 0.01 and
(right) σx = σy = 0.1.
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Figure 6: Uncertainties inz = atan(x/y) as a function ofy with σx = σy = 0.1 (left) at x = −0.13 and
(right) atx = 0.0.


