
UCSD—SIO 221C: Computing Spectra (A Refresher) 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

2

4

time (hours)
se

a
le

ve
l (

m
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−2

0

2
x 10

4

frequency

real part of fft

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−2000

0

2000

frequency

real part of fft−−−0 mean

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−2000

0

2000

frequency

imaginary part of fft−−−0 mean

Figure 1: (top) Time series of sea level from Scripps Pier in La Jolla. (second panel) Real part of Fourier
transform of time series. (third panel) Real part of Fourier transform of demeaned time series. (bottom)
Imaginary part of Fourier transorm of time series.

Example: Fourier Transform of a Data Record
The top panel of Figure 1 shows a year-long time series (from 2000) of sea level measured at the La

Jolla Pier. The second panel shows the real part of the Fourier transform. That’s

plot(real(fft(data)));

You can’t see much in this case, because frequency 0 contains the mean,which is large compared with the
variability.

So that we don’t have to look only at the mean, the third panel is the real part of the Fourier transform
of the data record.

plot(real(fft(data-mean(data))));

It is symmetric about the middle, with a couple spikes at either end that correspond roughly to one cycle per
day and two cycles per day—the dominant tidal frequencies. The bottom panel is the imaginary part of the
Fourier transform.

plot(imag(fft(data-mean(data))));

or

plot(imag(fft(data)));

It is anti-symmetric about the middle.
The Fourier transform in this raw form isn’t very informative, so we’ll do a little more work to digest

our results. For each frequency we can compute an amplitude. If I have data T that vary at only one
frequencyωk, I can represent them asT = ak cos(ωkt)+ bk sin(ωkt). Now suppose that I can have positive
and negative frequencies. That means that I can haveT = ak cos(ωkt) + bk sin(ωkt) + ck cos(−ωkt) +
dk sin(−ωkt) = (ak+ck) cos(ωkt)+(bk−dk) sin(ωkt). The average value ofT is zero, since sine and cosine
both have zero means—that’s not so interesting. The variance of the signal is the mean squared amplitude:

UCSD—SIO 221C: Computing Spectra (A Refresher) 2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4
x 10

8

frequency

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6
x 10

6

frequency

Figure 2: (top) Amplitude of Fourier transform as a function of frequency with mean included. (bottom)
Amplitude of demeaned time series.

∑

N

i=1
(ak + ck)

2 cos2(ωkti)+ (bk −dk)
2 sin2(ωkti), where the terms containing products of cosine and sine

disappear since sine and cosine are uncorrelated. In the same way that the integral1/(2π)
∫

2π

0
cos2(t) dt =

1/2, the sum1/N
∑

N

i=1
cos2(ωti) = 1/2. Thus the total variance ofT is ((ak + ck)

2 + (bk − dk)
2)/2.

Even if T represents a superposition of a lot of different sinusoidal variations,since sines and cosines
are orthogonal (if they’re resolved in our time domain), the presence of other frequencies won’t influence
the total variance at the frequencyωk. That means we can use the same rule to find the variance ofT
corresponding to each specific frequency.

We’re not done yet. We still have to look at the relationship betweenak, bk, ck anddk. Clearly the
amplitudes associated with positive and negative frequencies±ωk aren’t really independent. In our Fourier
transform, we found that the amplitude of positive frequencies was the complex conjugate of the amplitude
of negative frequencies. That means that if positive frequenciesωk are represented byak+ibk, then negative
frequencies−ωk have amplitudesak−ibk = ck+idk, soak = ck andbk = −dk. Therefore the total variance
of T is ((2ak)

2 + (2bk)
2)/2 = 2(a2

k
+ b2

k
), which is twice the squared magnitude of the amplitude that we

find by Fourier transforming.
Figure 2 shows the amplitude of the Fourier transformℜ(Xk)

2 + ℑ(Xk)
2 as a function of frequency.

plot(abs(fft(data)).ˆ2);

The record is strongly dominated by the mean (at the lowest frequency). To avoid seeing nothing but the
mean, we can subtract the mean, as shown in the bottom panel of Figure 2.

plot(abs(fft(data-mean(data))).ˆ2);

but this result is still completely dominated by a couple of energetic frequencies.
A more helpful strategy is to plot the amplitudes on a semilog plot, as shown in Figure 3.

semilogy(abs(fft(data)).ˆ2);

The resulting plot is completely symmetric. Frequencies indexed from 1 toN/2 can be thought of as positive
frequencies. Frequencies fromN/2 + 1 to N are equivalent to negative frequencies. Matlab’s notation is a

UCSD—SIO 221C: Computing Spectra (A Refresher) 3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

frequency

Figure 3: Amplitude of Fourier transform as a function of frequency with mean included, plotted with log
scale for y-axis.

little confusing since index1 corresponds to frequency 0, and indexN/2 + 1 corresponds to the maximum
resolved frequency.

Parseval’s Theorem
One of the most important features of the Fourier transform is that it rerepresents data in frequency

space, but it doesn’t alter the overall “power” or “energy”. Thus incontinuous form:
∫

∞

−∞

|x(t)|2 dt =

∫

∞

−∞

|X(f)|2 df. (1)

and in discrete form:
N

∑

n=1

|xn|
2 =

1

N

N
∑

k=1

|Xk|
2. (2)

Thus in our 8-point example above,
∑

y2 = 28 and
∑

|Y |2 = 224 = 28 × 8.
For complex numbers|Yk| =

√

ℜ(Yk)2 + ℑ(Yk)2. We can compute this as|Yk|
2 = YkY

∗

k
, whereY ∗

k

is the complex conjugate ofYk. In Matlab, the transpose is also the complex conjugate, so ifY is a column
vector, then we can compute|Y |2 = Y ′ ∗ Y or you can specify that|Y | = abs(Y).

Spectra
With Parseval’s theorem in mind, we can interpret our squared amplitudes asa measure of the total

“energy” in our time series. To plot energy as a function of frequency,we consider only frequencies between
1 andN/2, since frequency indices betweenN/2+1 andN simply repeat the same information. However, to
make sure that we account for all of the variability in the system, we need to multiply our Fourier transform
amplitudes by 2, except at zero frequency. In Matlab we compute:

N=length(data);
s=abs(fft(data)).ˆ2;
spectra(1)=s(1);
spectra(2:N/2+1)=2 * s(2:N/2+1);

UCSD—SIO 221C: Computing Spectra (A Refresher) 4

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

frequency (cycles per year)

sp
ec

tr
al

 e
ne

rg
y

La Jolla sea level, 2000

Figure 4: Spectral energy for La Jolla sea level in 2000.

We still have to decide how to normalize our spectra. Definitions are not always very consistent. In
general people worry more about the slope of the spectra and the size ofthe peaks, and don’t often interpret
the absolute value of the spectra. I advocate normalizing your spectra so that Parseval’s theorem is true:
making the total sum of squares in the original time-domain data equal the total sum of squares in the
frequency domain data. With Matlab, that means that you’ll divide the computedspectrum byN .

s=abs(fft(data)).ˆ2;
spectra(1)=s(1)/N;
spectra(2:N/2+1)=2 * s(2:N/2+1)/N;

semilogy(0:N/2,spectra);
xlabel(’frequency (cycles per N data points)’)

Figure 4 shows the normalized spectrum for the La Jolla sea level time series.You can see two big
peaks, corresponding to 1 and 2 cycles per day, and a lot of noise at other frequencies, which we don’t really
take to be a serious indication of statistically relevant variability. Clearly we need to compute error bars for
our spectrum.

