
UCSD—SIOC 221A: (Gille) 1

Lecture 10:
Reading: Bendat and Piersol, Ch. 5.2.1

Recap
Last time we looked at uncertainties and how to label units on our spectra, and we consid-

ered the sinc function and its impact on spectral segmenting. Now we need to look closely at
windowing.

Windowing our data
We left off saying that it would be useful to find a window (or “taper”) that could minimize

the impact of discontinuities in our spectrum, avoiding a rectangular window in favor of something
with a moother Fourier transform. What if we chose a triangle window? That will already give us
fewer side lobes.

But we can keep going to find a window that looks more like an exponential or a Gaussian.
All of these are defined to be centered around 0, for |t| ≤ T . We looked at a couple, and we’ll add
more now:

1. Cosine taper:

w(t) = cosα
(
πt

2T

)
(1)

with α = [1, 4].

2. Hanning window or “raised cosine” window (developed by von Hann):

w(t) = cos2
(
πt

2T

)
=

1 + cos(πt/T)

2
= 0.5 + 0.5 cos(πt/T) (2)

3. Hamming window. This variant of the Hanning window was developed by Hamming.

w(t) = 0.54 + 0.46 cos(πt/T) (3)

The Hamming window has less energy in the first side lobe but more in the distant side lobes.

Some other options include a Blackman-Harris window or a Kasier-Bessel window, and Harris
(1978, Use of windows for harmonic analysis, Proc. IEEE) provides detailed discussion of options.

So how do you use a window?

1. First you must demean your data—otherwise, the window will shift energy from the mean
into other frequencies. If you’re working in segments, you should demean (and detrend)
each segment before you do anything further.

2. Second, for a segment with N points, multiply by a window that is N points wide.

3. Since the window attentuates the impact of the edge of each segment, you can use segments
that overlap (typically by 50%). This will give you (almost) twice as many segments, so
instead of ν degrees some larger number.

4. Now Fourier transform, scale appropriately (e.g. by
√
8/3 for a Hanning window, to account

for energy attenuation) and compute amplitudes.

UCSD—SIOC 221A: (Gille) 2

Will the window preserve energy in your system? Not necessarily. You can normalize it
appropriately, but windowing can shift the background energy level of your spectrum relative to
the spectral peaks, and you’ll want to keep track of this.

Exercises
What are the Fourier transforms of the following functions: x(t) = 1, x(t) = cos(2πft), x(t) =

sin(2πft), x(t) = exp(−t2/2σ2), x(t) = t?
In our examples, note that the Fourier transforms of single frequency sine and cosine give

a single peak. (This uses the Kronecker delta, δnm.) The Gaussian (xf (t)), has a transform of
a Gaussian, though it’s a bit distorted in this finite-length log-log domain. Formally if xf (t) =

e−t
2/(2σ2), then Xf (f) =

√
2πσe−2π

2f2σ2 or with coefficients xf (t) =
√
α/πe−αt

2 corresponds
to Xf (f) = e−π

2f2/(a), which says in essence that the Fourier transform of a Gaussian is still a
Gaussian. The normalization for this is dependent on our exact notation for the Fourier transform.
And the linear pattern should really be thought of as a repeating sawtooth. It’s Fourier transform
will is a dramatically red spectrum. What does this mean for the Fourier transform of any long-term
trend?

Windowing and overlapping segments
So a quick recap. When we filter, we convolve the filter with our data in the time domain,

which is equivalent to multiplying in the frequency domain. When we window, we multiply by a
tapered window in the time domain, which is equivalent to convolving in the frequency domain.

How many degrees of freedom do you have for overlapping windows. Not 2ν but close to that.
Bendat and Piersol usefully say that overlapping by 50% will recover about 90% of the stability
lost due to tapering.

The windowed spectra that we’ve discussed as a basic approach in class are referred to by
a number of names in the literature. Some textbooks refer to windowing as “tapering”. And the
formal method is sometimes called the Welch method. Percival and Walden (Spectral Analysis
for Physical Applications, Cambridge University Press, 1993) provide a detailed discussion of this
approach under the name “Welch’s Overlapping Segment Averaging (WOSA)”.

Our overarching concern is that we adhere to Parseval’s theorem. Since the window default
normalization can reduce the variance, this will typically require that we scale up appropriately
to conserve energy/variance (e.g. by

√
8/3 for a Hanning window). How do you find this scale

factor? One way is to sum over a wide window. For example:

N=10000;
[sum(hanning(N).ˆ2)/N 3/8]
[sum(hamming(N).ˆ2/N 0.3974]

Will the window preserve energy in your system? Not necessarily. You can normalize it appropri-
ately, but windowing can shift the background energy level of your spectrum relative to the spectral
peaks, and you’ll want to keep track pay attention to the possibility of biases resulting from the
windowing procedure.

How many degrees of freedom do we have?
We’ve got a full recipe, but how many degrees of freedom do we really have?
We’ll try to sort this out today, along with venturing into Monte Carlo simulation.
Once you’ve created overlapping, windowed segments, then you’ll need to figure out how

many independent segments you really have. Clearly at a minimum you should have the equivalent

UCSD—SIOC 221A: (Gille) 3

of the number of segments that you would have if you did no overlapping. If you haveN data points
divided into segments that are 2M wide, then the minimum number of segments is N/(2M).
But with windowing, the end points of each segment are used less than the middle, making the
overlapping segments more independent, so perhaps we have more degrees of freedom. Since the
segments overlap by 50%, we probably can’t treat them as being independent. Bendat and Piersol
usefully say that overlapping by 50% will recover about 90% of the stability lost due to tapering.
How much does the use of overlapping segments modulate the degrees of freedom?

If you look this up in the 2nd edition of Emery and Thomson, you find a nice table (their Table
5.6.4), ostensably lifted from Priestley. Priestley’s results are nicely discussed by Koopmans (The
Spectral Analysis of Time Series, Academic Press, 1974). Emery and Thomson describe the table
as representing the equivalent degrees of freedom for windowed “block averaged” spectra.

A little further exploration of the literature shows that the values in Emery and Thomson’s
table are incorrectly labeled and actually represent degrees of freedom for spectra determined
by filtering or averaging adjacent frequencies from an initial spectral estimate. If you filter in
frequency, you can increase your degrees of freedom just the way you increase degrees of freedom
by using multiple segments. And you can refine your filtering to reduce spectral ringing effects
by using a carefully constructed filter. While people use the same types of filters for time domain
windowing/tapering and for frequency domain filtering, the effect is not identical. (If we wanted
an identical effect, we’d need to use the Fourier transform of the time domain window to filter in
the frequency domain. You could do that, but it’s not what we usually envision when we talk about
windowing or tapering, and it’s not what Emery and Thomson seem to describe.) What this means
is that the tables of “equivalent degrees of freedom” for the frequency domain don’t actually work
for windowed time domain data.

So at this point we have three options:

1. Abandon windowing and filter in the frequency domain, so that we can take advantage of the
correct estimates of degrees of freedom. This is a possibility, and we’ll get to it, but it seems
like we’re unnecessarily giving up on the windowing approach that we’ve been exploring.

2. Use a brute strength approach—Monte Carlo simulation—to figure out how many degrees
of freedom we have.

3. Find an analytic solution to decide how many degrees of freedom we have.

Monte Carlo simulation: How to avoid the traps imposed by standard statistical assumptions
(and how to fake your way as a statistician through computational inefficiency rather than
clever mathematics)

Most of the time, we estimate spectral error bars using basic statistical assumptions—that
data are normally distributed, that we have enough samples for the central limit theorem to apply,
that statistics are stationary. These assumptions make our statistical models tractable—we end up
with equations we can manipulate, allowing us (or clever statisticians 100 years ago) to derive
simple equations that give us rules for how systems should behave. But what happens when those
assumptions break down? Or what happens when we have little doubts about the validity of the
statistical model. We can always resort to a Monte Carlo process. In Monte Carlo methods, we
throw theory on its head and use an empirical approach to generate many realizations of our data
set, with noise appropriate to our problem.

As an example, consider the problem of determining the standard error of the mean. When
we discussed it in class, we did a quick derivation to show that the standard error of the mean is

UCSD—SIOC 221A: (Gille) 4

σ/
√
N , where σ is the standard deviation and N is the effective degrees of freedom. But what

if I didn’t trust this realization? I could generate a large number of realizations of my data with
noise typical of the real data, compute means for each realization, and look at the statistics of those
values.

So let’s put this to work. Suppose I’m computing the mean of N = 500 data points. With
one sample, I can compute the mean µ and standard deviation σ, and standard error σ/

√
500. But

I might wonder if µ is really representative. So I can generate an ensemble of fake data, perhaps
100 data sets based on adding Gaussian white noise (or non-Gaussian white noise) to the real data.
Each of these data sets will have a mean µi and a standard deviation σi. And I can look at the
standard deviation of all of the µi values. I can also look at the pdf of my µi’s and other higher
order statistics. For example:

A=randn(500,100);
mu=mean(A);
sigma_A=std(A);
std_A=sigma_A/sqrt(500);
[std(mu) mean(std_A)] % compare standard deviation of means

% vs standard error

Now we could expand on our example and ask, what if our noise were non-Gaussian or
gappy or had other problems, and we could adjust our Monte Carlo process appropriately. And
importantly, we can use this approach to test windowing strategies, by generating fake data with a
white spectrum (or a known red spectrum), windowing, segmenting, and evaluating the statistics
of the solution—the standard deviation in log space—relative to the formal error bar.

A more analytic approach to degrees of freedom for overlapping segments
If the Monte Carlo approach seems too ad hoc, we can try something else. Percival and

Walden provide a full derivation of the actual degrees of freedom for overlapping segments. They
define the following terms:

N = total length of record
NB = number of blocks
NS = segment length or block size
n = shift factor or number of points of overlap between segments
h = window, normalized so that h2 sums to 1.

They point out that the covariance between adjacent segments determines the adjustment to the
degrees of freedom, and this depends on h.

In this framework, the variance of the spectral estimate is:

var
{
Ŝ(WOSA)(f)

}
=

1

NB

NB−1∑
j=0

(
var
{
Ŝjn+1(f)

}
+

2

NB

∑
j<k

cov
{
Ŝjn+1(f), Ŝkn+1(f)

})
, (4)

where j and k are indices for separate but overlapping segments. The variance of the jth spectrum
should converge to the canonical spectrum:

var
{
Ŝjn+1(f)

}
≈ S2(f). (5)

UCSD—SIOC 221A: (Gille) 5

The covariance depends on the overlap of the tapers or windows:

cov
{
Ŝjn+1(f), Ŝkn+1(f)

}
≈ S2(f)

∣∣∣∣∣
NS∑
t=1

htht+|k−j|n

∣∣∣∣∣
2

, (6)

with ht defined to be zero when t is out of range (i.e. t > NS). This means that:

var
{
Ŝ(WOSA)(f)

}
≈ S2(f)

1 +
2

NB

∑
j<k

∣∣∣∣∣
NS∑
t=1

htht+|k−j|n

∣∣∣∣∣
2
 (7)

= S2(f)

1 + 2

NB−1∑
m=1

(
1− m

NB

) ∣∣∣∣∣
NS∑
t=1

htht+mn

∣∣∣∣∣
2
 . (8)

Here’s a spoiler. Either analytically, or by plugging in normalized discrete window values ht,
we can compute the adjustments to our effective degrees of freedom shown in Table ??. You’ll see
that these values provide a fairly effective match to the values that you obtain from Monte Carlo
simulation.

Window type Equivalent degrees
of freedom (ν)

Boxcar 4/3
Triangle 16/9
Hanning 36/19 ≈ 1.90
Hamming ∼1.80

Table 1: Effective number of degrees of freedom relative to the total number of segments, using
50% overlap. (With no overlap, the equivalent degrees of freedom would be double the number of
segments.)

To be continued....

