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Lecture 11: Degrees of freedom for overlapping segments, and other approaches to computing spectra
Reading: Bendat and Piersol, Ch. 5.2.1

Recap

We’ve looked at a basic strategy for computing spectra, the Welch’s overlapping segment
method, and we’ve talked about the value of segmenting, with overlaps, detrending, and applying
a taper or window. Now let’s wrap up our consdieration of the number of degrees of freedom.
Then we’ll look at some alternate approaches to computing spectra.

Analytic approach to degrees of freedom for overlapping segments
Following Percival and Walden, we define the following terms:

N = total length of record
Np = number of blocks
Ng = segment length or block size
n = shift factor or number of points of overlap between segments
h = window, normalized so that A% sums to 1.

Percival and Walden point out that the covariance between adjacent segments determines the ad-
justment to the degrees of freedom, and this depends on h.
Last time, I wrote out the expression for the variance of the spectral estimate:
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where j and k are indices for separate but overlapping segments. The variance of the jth spectrum
converges to the canonical spectrum:
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The covariance depends on the overlap of the tapers or windows:
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This formulation allows for arbitrary levels of overlap, so you could imagine starting a new segment
every data point and having to contend with with lots of complicated covariances between adjacent
segments.

For practical purposes, we typically work with 50% overlap, so n = Ng/2. In this case,
Percival and Walden show that the equation for the effective degrees of freedom simplifies to
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In the limit of large Ny and many samples, it’s relatively straightforward to find an analytic

solution: oON
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subject to the requirement that the window normalization is:
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Either analytically, or by plugging in normalized discrete window values h;, we can compute

the adjustments to our effective degrees of freedom shown in Table |1} You’ll see that these values
provide a fairly effective match to the values that you obtained from Monte Carlo simulation.

Window type Equivalent degrees
of freedom (v)

Boxcar 4/3
Triangle 16/9
Hanning 36/19 ~ 1.90
Hamming ~1.80

Table 1: Effective number of degrees of freedom relative to the total number of segments, using
50% overlap. (With no overlap, the equivalent degrees of freedom would be double the number of
segments.)

So what of the other texts? The 2014 edition of Thomson and Emery is as misleading as the
earlier editions. Von Storch and Zwiers, who are usually fairly lucid on data analysis, strongly
favor filtering in the frequency domain so don’t consider the impact of windowing or tapering in
the time domain. Priestley also focuses largely on spectra computed from the autocovariance and
spectra computed by filtering the periodogram. Their published tables are intended to provide
guidance on the “lag window” (e.g. \(t)) for spectra computed from the autocovariance, and the
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“spectral window”, W ( f), which is Fourier transform of the lag window. When () and W ( f) are
used as a Fourier transform pair, they should have equivalent impacts on the degrees of freedom.

Finally, Percival and Walden note that we can also consider overlaps other than 50%, by
adjusting m in their original equation:
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Their Figure 293 shows degrees of freedom as a function of overlap for the Hanning window. We
can code this in Matlab to consider other windows as well, as illustrated in Figure m:

v

(12)

Ns=512;

n=256;
N=Ns=%100;
Nb_theory=N/Ns;

h=ones (Ns, 1) /sqrt (Ns) ;
for n=1:Ns-1
Nb=round ( (N-Ns) /n+1) ;
sumh=1[1];

for m=1:Nb-1

1if (Ns—-m*n>=1)

sumh (m) =(1-m/Nb) xabs (sum(h (1:Ns—-m*n) .xh (1+mxn:Ns))) "2;

end

end

denom=1+2+*sum (sumh) ;
nu_boxcar (n)=2%«Nb/denom;
end

h=sqrt (2/3/Ns) * (1-cos (2+pi* (1:Ns) /Ns));

for n=1:511
Nb=floor ( (N-Ns)/n+1);
sumh=1[];

for m=1:Nb-1

if (Ns—m#*n>=1)

sumh (m) =(1-m/Nb) rabs (sum(h (1:Ns—-m*n) .xh (1l+m*n:Ns))) " 2;

end
end
denom=1+2*sum (sumh) ;
nu_hanning (n)=2+«Nb/denom;
end

hold off
plot (1-(1:2:Ns-1) /Ns,nu_boxcar(l:2:end) /Nb_theory, ' LineWidth’, 3);
hold on
plot (1-(1:2:Ns-1) /Ns,nu_hanning(l:2:end) /Nb_theory,’LineWidth’, 3);
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set (gca, 'FontSize’,16)

xlabel (' Fractional overlap between segments’,’FontSize’,16)

yvlabel ('Effective dof relative to # non-overlapping segments’, ...
"FontSize’,16)

legend (' Boxcar’,’"Hanning’)

Filtering in the frequency domain

When we talked about windowing, we noted that windowing in the time domain is equivalent
to convolution in the frequency domain (and filtering in the time domain is equivalent to multipli-
cation in the frequency domain.) This could lead you to an interesting conclusion. What if you
skipped all the windowing and just did convolutions (i.e. filtering) in the frequency domain? In the
limit in which you choose the same filter, these options should be the same.

This approach was originally developed by Daniell and is nicely discussed by von Storch and
Zwiers (see their section 12.3.11). Daniell’s original idea was to run a moving average over the
Fourier transform of the full record. In this case the confidence intervals are determined by:

E
P <x3,1_a/2 <wv EEQ < xiam) (13)

where v in this case is 2 x the number of frequencies averaged together.

The advantages of this approach are that it provides an unbiased estimate of the true spectrum.
The width of our averaging forces us to tradeoff bias (minimized if we do less averaging) vs
variance (minimized with more averaging). One virtue of averaging in the frequency domain is that
we can apply different levels of averaging (with different error bars) depending on the frequency.

Using the auto-covariance to think about spectra.
Now let’s look at spectra from a different perspective. First, let’s remind ourselves of the
definition of a convolution: -
2(t) = / z(T)y(t — 7)dr. (14)
When we talked about Parseval’s theorem, my notes mentioned that the autocovariance is the
convolution of z(¢) with its time reversal, z(—t).

y(t) = /OO x(t)z (T + t)dt. (15)
More formally, we might write this autocovariance as R, (7).
Ryp(7) = /OO x(t)z(T + t)dt. (16)
Now, what if we Fourier transform R?
Sea(f) = / N Ry (1)e ™7 dr. (17)

Formally, this and its inverse transform are the Wiener-Khinchine relations.
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Now let’s think about starting with two functions, x(¢) and y(t). We can write their Fourier
transforms:

X(f) = /Oox(t)e‘ﬂ”ftdt (18)
Y(f) = /Ooy(t)e_mftdt. (19)

So now let’s define X times the complex conjugate of Y. (Why do we consider the complex
conjugate? Because it’s how we always multiply vectors.) We find the Fourier transform of the
complex conjugate by substituting —: for ¢ everywhere it appears:

Yi(f) = /too y(£)e™ " dt (20)
= /jo y(=t)e Tt d(—t) 1)
= /t__oo—y<—t>e‘i2”ftdt (22)
= /fo y(—t)e 2t dt. (23)
So -
XU = [ koe (4)

For the moment, we have no idea what k(t) should be, but we should be able to figure it out. If
X(f)Y*(f) is a product in the frequency domain, then %(¢) should be a convolution in the time
domain: -

k(t) = / z(u)y(u —t) du. (25)
(Remember that we’d normally use ¢ — u for a convolution; but here we reverse the sign to be
consistent with using the complex conjugate Y*(f).) We used a derivation very similar to this in
about Lecture 7, when we wanted to persuade ourselves that Parseval’s theorem would work. But
now we revisit this with a goal of looking closely at this convolved quantity, which represents the
autocovariance. We can plug k(¢) into our equation to check this.

/OO k(t)e ™t = /OO {/00 x(u)y(u —t) du} e~ 2Tl qt (26)

= / / —z(u)y(u — t)e? W De=2mfu gy — Y du  (27)
—00 Ju—t=00

= / x(u)e /v {/00 y(u —t)e?™ =t d(y — t)} du  (28)

= / h z(u)e 2™ Y (f) du (29)
= Y*(f) / h z(u)e v dy (30)

= XY™ () (31
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Here we’ve taken advantage of the fact that the integral runs from —oo to 400 which lets us treat
u — t as a variable that depends only on .
So we can think about what happens when z(t) = y(¢), so that

k(t) = /00 z(u)x(u —t) du = Ry (—t). (32)

This means that k(¢) is the autocovariance of x. The autocovariance is symmetric, so we could
also write this as

k(t) = /OO z(u+ t)z(u) du = Ry, (t). (33)
Regardless
IX(f)] = / k(t)e ™" dt. (34)

This says that the Fourier transform coefficients squared (what we use when we compute spectra)
are equivalent to the Fourier transform of the autocovariance.
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Figure 1: Ratio of degrees of freedom v relative to nominal number of segments available if no
overlapping is used for Hanning window and boxcar window.



