
UCSD—SIOC 221A: (Gille) 1

Lecture 14: Frequency-wavenumber spectra, cross-coherence, and cross-spectra
Reading: Bendat and Piersol, Ch. 5.1-5.2, with attention to cross-covariance and cross-spectrum

Recap
Last time we looked at computing the spectrum from the autocovariance, at variance-preserving

spectra, and at frequency-wavenumber spectra. Today we continue on frequency-wavenumber
spectra and then move on to covariance and coherence.

Frequency-Wavenumber spectra: an example
Let’s suppose that we have a propagating signal. We can generate an artificial signal of the

form:

H=1000;

dt=0.05; %time interval about 20 times a day
dz=10; %10-m
t=dt:dt:10; %time in days
z=(dz:dz:H)’; %depth in m

%indices for the calculation
iz=1:length(z);
it=1:length(t);

%Generate a propagating signal with no noise.
[tt,zz]=meshgrid(t,z);
sig1=sin(3*pi*zz/H - 2*pi*1/3*tt);
%Change the sign to make propagation go the other way.

data=sig1;

% plot
figure(2)
imagesc(t,z,data);colorbar; axis xy

This will show a propagating signal.
To compute a frequency-wavenumber spectrum for this, we just need to Fourier transform in

two dimensions. Since this is a noise free case, we can be fairly cavalier about how we approach
it.

[m,n]=size(data);

fn=1/2/dt;
kn=1/2/dz;

%fundamental frequency and wavenumber
df=1./n./dt;
dk=1./m./dz;

UCSD—SIOC 221A: (Gille) 2

% make frequencies and wavenumbers that run from -Nyquist to + Nyquist
f=[-fliplr(1:(n/2)) 0 (1:(n/2-1))].*df;
k=[-fliplr(1:(m/2)) 0 (1:(m/2-1))].’.*dk;

% Fourier transform in two dimensions
% here we use fft2 for the 2-d Fourier transform
% and fftshift to reorder the Fourier transform
st=fftshift(fft2(data))/m/n;

% alternatively you could do this as
st= fftshift(fft(fft(data’)’))/m/n;

% turn this into a spectrum
spec=st.*conj(st)./df./dk; %UNITS: (m/s)ˆ2/cpd/cpm

% and plot
figure(3)
imagesc(f,k,log10(spec)); axis xy
colormap(jet)
shg
xlabel(’\omega / cpd’)
ylabel(’m / cpm’)

% this plots the full 2-d plane

% But you might want a half plane. In that case, you should
% scale by a factor of 2:
spec=spec(:,101:200); spec(:,102:200)=2*spec(:,102:200);
imagesc(f(101:200),k,log10(spec)); axis xy
colormap(jet)
shg
xlabel(’\omega / cpd’)
ylabel(’m / cpm’)

Now what happens when you have noise and need to segment. Let’s make a larger data set and
chop it up into pieces:

t=dt:dt:30; %time in days
z=(dz:dz:H)’; %depth in m

%indices for the calculation
iz=1:length(z);
it=1:length(t);

%Generate a propagating signal with no noise.
[tt,zz]=meshgrid(t,z);
sig1=sin(3*pi*zz/H - 2*pi*1/3*tt) + .5*randn(length(z),length(t));

UCSD—SIOC 221A: (Gille) 3

data=sig1;

% plot
figure(2)
imagesc(t,z,data);colorbar; axis xy

To chop this into segments, we have choices to chop in time or space or both.

icount=0; clear st;
for i=1:50:501
icount=icount+1;
data_use=data(:,i:i+99);
n_use=size(data_use,2);
st(:,:,icount)=fftshift(fft2(data_use))/m/n_use;
end

spec=sum(abs(st).ˆ2/df/dk,3);
f=[-fliplr(1:(n_use/2)) 0 (1:(n_use/2-1))].*df;
figure(3)
imagesc(f,k,log10(spec)); axis xy
colormap(jet)
shg
xlabel(’\omega / cpd’)
ylabel(’m / cpm’)

Interestingly, we can achieve the averaging that we need, either by segmenting in time or in space
or in both directions. We do have to be careful about detrending, and we need to pay attention to
our windowing strategy.

Covariance
Early in the quarter we discussed the variance, and we left for later the concept of correlation

or covariance. If we want to compare two time series, we can compute the variance of one record
relative to the other. Formally we can write:

cov(x, y) = 〈x(t)y(t)〉. (1)

or in discrete terms

cov(x, y) =
1

N

N∑
i=1

xiyi. (2)

For comparison purposes, we often normalize this to produce a correlation coefficient, which is
normalized by the variance:

r =
1
N

∑N
i=1 xiyi√

1
N

∑N
i=1 x

2
i
1
N

∑N
i=1 y

2
i

. (3)

(You might wonder how to judge whether a correlation coefficient is statistically significant. Cor-
relation coefficients should have a Gaussian distribution, which means that cumulative distribution

UCSD—SIOC 221A: (Gille) 4

function will be an error function. We can use this to determine the correlation coefficient that we
might expect from an equivalent number of random white noise variables:

δr = erf−1(p)

√
2

N
(4)

where p is the significance level we want to consider, typically 0.95, and N is the effective number
of degrees of freedom.)

Coherence
Coherence provides information that is analagous to a correlation coefficient for Fourier trans-

forms. It tells us whether two series are statistically linked at any specific frequency. This can be
important if we think that the records are noisy or otherwise uncorrelated at some frequencies, but
that they also contain statistically correlated signals.

To compute coherence, first we need a cross-spectrum. (We looked at this in passing when we
considered Parseval’s theorem, but at that stage, I quickly set my different variables equal to each
other.) Consider two time series x(t) and y(t):

x(t) =
∞∑

n=−∞

Xne
i2πfnt (5)

y(t) =
∞∑

n=−∞

Yne
i2πfnt (6)

The the cross spectrum is computed in analogy with the spectrum:

ŜXY (fm) =
〈X∗mYm〉

T
(7)

The relationship between the cross-spectrum and the covariance is analogous to the relationship
between the spectrum and the variance. There are some important details to notice.

1. The cross spectrum is complex, while the spectrum was real.

2. The cross spectrum is computed as an average of multiple spectral segments.

3. In our discrete Fourier transform, we should be normalizing by N , as always, but we’re
mostly concerned with relative values.

The cross-spectrum is complex, and when we use it we distinguish between the real and
imaginary parts. The real part is called the “co-spectrum”:

C(fk) =
1

N
<

N∑
n=1

(XkY
∗
k) (8)

and the imaginary part is called the “quadrature spectrum”

Q(fk) =
1

N
=

N∑
n=1

(XkY
∗
k). (9)

UCSD—SIOC 221A: (Gille) 5

To determine the frequency-space relationship between two data sets xn and yn, we first divide
them into segments and Fourier transform them, so that we have a set of Xk’s and a set of Yk’s.
When we computed spectra, we found the amplitude of each Xk and then summed over all our
segments. Now we’re going to do something slightly different. For each segment pair, we’ll
compute the product of X times the complex conjugate of Y : XkY

∗
k . Then we’ll sum over all the

segments. In Matlab this becomes

sum(X.*conj(Y),2);

The corresponding amplitude is
√
C2(fk) +Q2(fk). For comparison the spectra for X was:

Sxx(fk) =
1

N

N∑
n=1

XkX
∗
k , (10)

and it was always real.
The coherence resembles a correlation coefficient. It’s the amplitude squared divided by the

power spectral amplitudes for each of the two components:

γ2xy(fk) =
C2(fk) +Q2(fk)

Sxx(fk)Syy(fk)
. (11)

(Sometimes you’ll seeGxx,Gyy, andGxy in place of Sxx, Syy, and Sxy. Bendat and Piersol define S
to represent the two sided cross-spectra density and G to represent to represent one-sided spectra.)

In addition to the coherence amplitude, we can also infer a phase. The phase φ(fk) =
tan−1(−Q(fk)/C(fk)) tells us the timing difference between the two time series. If φ = 0,
changes in x and y happen at the same time. If φ = π, then x is at a peak when y is at a trough.
And a value of φ = π/2 or φ = −π/2 tells us that the records are a quarter cycle different.

Digression: Extracting phase information from the Fourier coefficients
After all this effort to square Fourier coefficients, you might wonder what the real and imag-

inary parts are really good for. They are useful for sorting out the phasing of your sinusoidal
oscillations. When is the amplitude at a maximum? To do this you can keep in mind that

A cos(σt+ φ) = a cos(σt) + b sin(σt). (12)

This can be rewritten:

cos(σt) cos(φ)− sin(σt) sin(φ) =
a

A
cos(σt) +

b

A
sin(σt), (13)

which means that
a

A
= cos(φ) (14)

b

A
= − sin(φ) (15)

so

φ = atan
(
− b
a

)
. (16)

Actually there’s more information in the Fourier coefficients than this conveys, since you know
the signs of both a and b, and not just their relative magnitudes. The arctangent function doesn’t
distinguish +45◦from -135◦, but we can. In some numerical implementations, you can address this
using a function called atan2.

UCSD—SIOC 221A: (Gille) 6

phi = atan2(-b,a);

Coherence: Hypothetical Example for Mission Bay Channel
The power of coherence comes because it gives us a means to compare two different variables.

With spectra we can ask, is there energy at a given frequency? With coherence we can ask whether
wind energy at a given frequency drives an ocean response at a given frequency. Does the ocean
respond to buoyancy forcing? Does momentum vary with wind? Does one geographic location
vary with another location? Coherence is our window into the underlying physics of the system.

Let’s put this to work, starting with an idealized case: Suppose we want to estimate currents
entering and leaving the Mission Bay Channel. How do waves travel through the channel? We can
represent this with a dispersion relationship describing the dominant propagation in frequency-
wavenumber space: k = K(f).

You could imagine measuring Mission Bay by installing one current meter (with a cost of
$10-$20,000), but another approach is to install a couple of pressure recorders along the axis of
the channel (at a cost of $1000 each). Let’s assume all waves come from the ocean, and travel
along the channel axis at speed V = c + Ucurrent, where c is the wave speed and Ucurrent the
background current speed. If the waves are surface gravity waves, c =

√
gD. The sensors measure

time series of pressure only, so provide frequency information f . How does f relate to velocity? If
we have a wavenumber 2πk = 2π/λ, what does the pressure sensor see? It will detect frequencies
f = kV = k(c+ Ucurrent). So we can compute the cross spectrum between our two records.

Let’s test this out. We’ll define a hypothetical data set:

lambda=10; % 10 m wavelength
V=0.3; % 0.3 m/s propagation
n2s=0.2; % noise-to-signal ratio
time=(1:5000)’;
x=n2s*randn(5000,1)+cos(2*pi/lambda*V*time);
y=n2s*randn(5000,1)+cos(2*pi/lambda*V*(time)+pi/2);

What happens if you Fourier transform without bothering to segment? Then the data end up
being unrevealing. We can demonstrate this:

fx=fft(x);
fy=fft(y);
sx=abs(fx(1:end/2)).ˆ2; sx(2:end)=2*sx(2:end);
sy=abs(fy(1:end/2)).ˆ2; sy(2:end)=2*sy(2:end);
cxy=conj(fx(1:end/2)).*fy(1:end/2); cxy(2:end)=2*cxy(2:end);
C=abs(cxy)./sqrt(sx.*sy);
plot(C)

In this case, the coherence is 1 everywhere. Why is that? Because without averaging, we’re merely
computing:

γ2xy =
(X∗Y)∗(X∗Y)

X∗XY ∗Y
(17)

=
XY ∗X∗Y

X∗XY ∗Y
(18)

=
X∗XY ∗Y

X∗XY ∗Y
(19)

= 1 (20)

UCSD—SIOC 221A: (Gille) 7

When it’s done properly, coherence measures how well different segments of x and y show the
same type of relationship at a given frequency. We need the averaging to find out if the phase
relationship between x and y is repeatable. With only one segment, both x and y are guaranteed
to have information at each frequency with a definable phase relationship between x and y. The
multiple segments allow us to test whether this phase relationship is relatively stable in time: does
x always lead y by about the same fraction of a cycle?

To do the coherence calculation more constructively, we determine the frequency-space rela-
tionship between two data sets xn and yn, by first dividing them into segments and then Fourier
transforming them, so that we have a set of Xk’s and a set of Yk’s. When we computed spectra,
we found the amplitude of each Xk and then summed over all our segments. Now we’re going to
do something slightly different. For each segment pair, we’ll compute the product of X times the
complex conjugate of Y : XkY

∗
k . Then we’ll sum over all the segments. In Matlab this becomes:

segment_length=500;
N=length(x);
M=segment_length/2; % define this value
Nseg=N/segment_length;
x_use=[reshape(x,segment_length,Nseg) ...

reshape(x(M+1:end-M),segment_length,Nseg-1)];
y_use=[reshape(y,segment_length,Nseg) ...

reshape(y(M+1:end-M),segment_length,Nseg-1)];
Nuse=size(x_use,2); % segment count, should be 2*Nseg-1
fx=fft(x_use); % should window and detrend here, but we’re

% skipping that for now
fy=fft(y_use);
sx=sum(abs(fx(1:M+1,:)).ˆ2,2)/Nuse; % average over all spectra

% (sum over 2nd index)
sx(2:end)=sx(2:end)*2;
sy=sum(abs(fy(1:M+1,:)).ˆ2,2)/Nuse; % average over all spectra

% (sum over 2nd index)
sy(2:end)=sy(2:end)*2;
cxy=sum(fx(1:M+1,:).*conj(fy(1:M+1,:)),2)/Nuse;
cxy(2:end)=cxy(2:end)*2; % since we multiplied the spectra by 2,

% we also need to multiply the cospectrum by 2

nd=size(x_use,2);

From this we can compute the coherence and phase:

C=abs(cxy)./sqrt(sx.*sy);
phase_C = atan2(-imag(cxy),real(cxy));

The phase difference that emerges from this is only relevant at the phase where there is coher-
ence energy (15 cycles/1000 points in the example above), and in that case the phase is a quarter
cycle different, with relatively small error bars. If we reverse the order of x and y, we’ll find
negative phase, so a lead will turn into a lag. ‘

The phase φ(fk) = tan−1(−Q(fk)/C(fk)) tells us the timing difference between the two time
series. If φ = 0, changes in x and y happen at the same time. If φ = π, then x is at a peak when
y is at a trough. And a value of φ = π/2 or φ = −π/2 tells us that the records are a quarter cycle
different.

