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Lecture 2: Probing the power of probability density functions
Reading: Martin, Ch.1; Bendat and Piersol, Ch. 3.1-3.3

Announcements: auditors, please make sure that I have your UCSD e-mail.
Copyrighted material on Canvas
Announcement: Field trip on Friday, October 15, 9:00 am. We’ll meet at the base of the pier.

Recap
Lecture 1 adddressed some basic statistical measures. We looked at examples of time series,

and we considered some basic terminology. If we have a collection of data (random variables), we
can compute their mean, variance, standard deviation, median, and we can examine the probability
density function of the data. We also made a distinction between the expectation value (the value
we’d expect if we had an infinite number of perfectly sampled observations) and the observed
mean. Similarly, we can distinguish between an empirical probability density function (what we
actually observe) and the idea probability density function that we observe.

An example
Melissa Carter, the Shore Stations Program manager, is in charge of the pier data. When

we visit the pier on October 15 (for those who are available), she’ll tell us in detail about the
data collection system. The system includes automated sensors that suffer from biofouling and
manual time series that are under sampled. Melissa asks, “What new information is gained with
the continuous 4min time series, and is there a need to continue to collect the manual once per day
measurements?”

We could start to answer these questions by using the tools we reviewed in the first lecture.
Are the means the same? Are the variances the same? But that will give us an incomplete picture
for several reasons:

1. As we noted last time, data sets can perversely have the same mean and standard deviation,
but have pdfs that look nothing alike.

2. When we deal with real data, nothing is ever identical, so we’ll need to know how big a
difference is acceptable.

The pdf is going to help us work through these issues. What can we do with a pdf? We’re
headed toward covering these three topics:

1. How do we define a pdf?

2. How do we use the pdf to think about confidence limits? Are two estimates different?

3. How can we tell if two pdfs are different?

The formal definition of a probability density function is based on the first derivative of the
probability:

p(x) = lim
∆x→0

[
Prob[x < x(k) ≤ x+ ∆x]

∆x

]
(1)

where x(k) is a random variable. The k tells us that the random variable is associated with a
sample point labelled k. You can think of k as the index for the experiment or measurement that
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produces this particular value of x (which we label x(k). This definition means that the integral of
the probability density function gives us the probability, as we noted last time:∫ ∞

−∞
p(x) dx = 1 (2)

The cumulative distribution function C(x) is the probability of observing a value less than x.
It can be computed by integrating the pdf.

C(x) =
∫ x

−∞
p(x′)dx′. (3)

C(x) is 0 when x approaches minus infinity, indicating that there’s a negligibly small chance of
having an infinitely small value of x, and it is 1 when x goes to plus infinity, which says that there
is a 100% chance of observing some value. The midpoint, where C(x) = 0.5 is the median.

One of the clever aspects of the pdf is that we can use it to determine an expected value:

E(x(k)) =
∫ ∞
−∞

xp(x) dx = µx. (4)

Why does this work? In essence, I reorder all the values in my data set and ask what’s the prob-
ability of finding x in bin 1, what’s the probability of finding x in bin 2, etc? Or in other words,
what fraction of my total record is in bin 1, what fraction is in bin 2, etc? And summing this way,
I’ll find the mean.

We can also use this for x2 or for (x− µx)2.

E((x(k)− µx)2) =
∫ ∞
−∞

(x− µx)2p(x) dx = σ2
x. (5)

Let’s start by making an empirical pdf. Last time we talked about temperature on the pier, so
now, let’s take a look at pressure. We could plot a histogram of the data using the hist function, but
that wouldn’t give us a pdf. For the pdf we need to be properly normalized. We can still do this
using hist:

% read the data
time=...

ncread(’http://sccoos.org/thredds/dodsC/autoss/scripps_pier-2019.nc’,...
’time’);

pressure=...
ncread(’http://sccoos.org/thredds/dodsC/autoss/scripps_pier-2019.nc’,...
’pressure’);

%time=ncread(’scripps_pier-2019.nc’,’time’);
%pressure=ncread(’scripps_pier-2019.nc’,’pressure’);
%
% compute the histogram
dx1=.1;
[a,b]=hist(pressure,2:dx1:5);
plot(b,a/sum(a)/dx1,’LineWidth’,3)
%
% or using a different dx
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dx2=0.01
hold on
[c,d]=hist(pressure,2:dx2:5);
plot(d,c/sum(c)/dx2,’r’,’LineWidth’,2)
xlabel(’pressure (dbar)’,’FontSize’,14)
ylabel(’probability density’,’FontSize’,14)
set(gca,’FontSize’,14)

Rob Pinkel, who taught this class before I took over, always told students that they couldn’t
use the “hist” function for this and should do a loop. How do we do that?

% or using a loop
dx=0.1; clear n_bin;
bins=2:dx:5;
for i=1:length(bins)
n_bin(i)=length(find(pressure>bins(i)-dx/2 & pressure<=bins(i)+dx/2));
end
plot(bins,n_bin/sum(n_bin)/dx,’g’)

We like to think that geophysical variables are normally distributed, meaning that the distri-
bution is:

p(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(6)

where µ is the mean and σ is the standard deviation. So we can add a Gaussian to our plot:

sigma=std(pressure); mu=mean(pressure)
plot(bins,1/sigma/sqrt(2*pi)*exp(-(bins-mu).ˆ2 /(2*sigmaˆ2)),...

’k’,’LineWidth’,2)

See Figure 1 for the results.
We like the Gaussian, because it’s easy to calculate, and it has well defined properties. We

know that 68% of measurements will be within ±σ of the mean, and 95% of measurements will
be within ±2σ of the mean.

We can turn this around to decide whether a measurement is an outlier. If we expect to see a
lot of values near the mean, and we find that we have a measurement that deviates from the mean
by 5σ, then it’s not terribly statistically likely. (For a Gaussian, 99.99994% of observations should
be within ±5σ of the mean.) Thus we might decide to throw out all outliers that differ from the
mean by more than 3 or 4 or 5σ.

We can also use this framework to think about uncertainty. If we measure one realization of
an estimate of the mean, that will become our best estimate of the mean. If our formal estimate of
our a priori uncertainty is correct (and we might also call this σ, but let’s use δ for now), then we
expect that 68% of the time, our single observation should be within±δ of the true value, and 95%
of the time, our single observation should be within ±2δ of the true value.

Later in this class, we’ll come to the concept of convolution (which is effectively a filter).
One reason that we really like the Gaussian is because the convolution of a Gaussian with another
Gaussian is still a Gaussian, so we can manipulate the statistics easily. But are data necessarily
normally distributed?

So this might lead you to think that all data are fairly Gaussian.
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Example pdfs of real data? Non-Gaussian cases.
Now what if we plot chlorophyll?

hold off
chl=...

ncread(’http://sccoos.org/thredds/dodsC/autoss/scripps_pier-2019.nc’,...
’chlorophyll’);

flag=...
ncread(’http://sccoos.org/thredds/dodsC/autoss/scripps_pier-2019.nc’,...
’chlorophyll_flagPrimary’);

%chl=ncread(’scripps_pier-2019.nc’,’chlorophyll’);
%flag=ncread(’scripps_pier-2019.nc’,’chlorophyll_flagPrimary’);
xx=find(flag==1);
[a,b]=hist(chl(xx),.5:49.5);
plot(b,a/sum(a),’LineWidth’,2)
hold on
ylabel(’probability density’,’FontSize’,14)
xlabel(’chlorophyll (\mu g/L)’,’FontSize’,14)
%
mu=mean(chl(xx));
sigma=std(chl(xx));
bins=.5:49.5;
plot(bins,1/sigma/sqrt(2*pi)*exp(-(bins-mu).ˆ2 /(2*sigmaˆ2)),...

’k’,’LineWidth’,2)
set(gca,’FontSize’,14)

As illustrated in Figure 2, chlorophyll concentrations are decidedly non-Gaussian. (We usually
refer to chlorophyll as being log-normally distributed, meaning that the log of the values might be
Gaussian.)
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Figure 1: Probability density function for 2019 pressures measured from the shore station at the
Scripps pier. Here the blue line indicates the pdf computed using bins with a width of 0.1 dbars,
and the red line indicates the pdf for bins with a width of 0.01 dbars. The black line is a Gaussian
defined by the mean and standard deviation of the measurements.

Figure 2: Probability density function for 2019 chlorophyll measured from the shore station at the
Scripps pier. Here the blue line indicates the empirical pdf, and the black line is a Gaussian defined
by the mean and standard deviation of the measurements.


