
UCSD—SIOC 221A: (Gille) 1

Lecture 4:
Reading: Bendat and Piersol, Ch. 4 (esp. section 4.6)

Recap
Key concepts from last time focused on the standard error of the mean and its links to error

propagation, the chi-squared and Rayleigh distributions, and methods for telling whether one pdf
is statistically like another (the Komogorov-Smirnov test and the chi-squared test).

You’ll recall that the Rayleigh distribution represents the square root of two independent
Gaussian components, y =

√
x21 + x22.

p(y) =
y

σ2
exp

[
− y2

2σ2

]
. (1)

And the χ2 distribution represents the sum of n squared variables:

χ2
n = z21 + z22 + z23 + ...+ z2n. (2)

The slides showed examples of these, and we noted that the χ2 distribution has a mathematical
formulation in terms of the Γ function. I glossed over the definition of the Γ function, because it’s
not very mathematically tractable, and is normally handled via a look-up table.

We also looked at two possible tests for telling if two pdfs differ. I didn’t show you how to
apply these, so here’s a quick guide. One test was the Kolmogorov-Smirnov test. (If you have one
data set, and want to know whether it is plausibly Gaussian, put all the data in a vector x, and in
Matlab use:

kstest(x)

If the output is zero, you stick to the null hypothesis that the data are Gaussian; if the output is
1, you reject that hypothesis at the 5% significance level and thus surmise that perhaps the data
weren’t Gaussian. So for example, if we want to test if a vector of Gaussian noise has a Gaussian
distribution, we could type:

kstest(randn(10000,1))

which produces 0. For a non-Gaussian (uniform distribution) of random numbers

kstest(rand(10000,1))

produces 1, implying that the input vector is not Gaussian.
If we’re comparing two data sets, we can make two vectors (e.g. x and y), and use

kstest2(x,y)

. Again, an output of 0 says plausible the two records come from the same “true” distribution;
output of 1 says that at the 5% significance level, you can reject the null hypothesis that x and y
come from the same general source. Compare these two cases:

kstest(randn(10000,1),randn(10000,1))
kstest(randn(10000,1),rand(10000,1))

UCSD—SIOC 221A: (Gille) 2

The second was a χ2 test, in which you bin your data into histograms and ask if the number
of data you find in each bin is consistent.

A second strategy is to bin the data and ask whether the number of data in the bin is consistent
with what we’d expect, using a χ2 statistics. In this case for comparisons with a theoretical pdf,

χ2 =
∑
i

(Ni − ni)
2

ni

, (3)

where Ni is the observed number of events in bin i, and ni is the theoretical or expected number of
events in bin i. For comparisons between two distributions,

χ2 =
∑
i

(Ni −Mi)
2

Ni +Mi

, (4)

where Ni and Mi are each observed numbers of events for bin i. The values of χ2 are evaluated
using the χ2 probability function Q(χ2|ν), which is an incomplete gamma function, where ν is the
number of bins (or the number of bins minus one, depending on normalization). In Matlab this is

gammainc(chi_squared/2,nu/2)

or equivalently

chi2cdf(chi_squared,nu)

To test this out, you can produce a few sets of binned random data. (Be sure to use the same
bins for each record.)

[a1,a2]=hist(randn(100000,1),-6:.5:6);
[b1,b2]=hist(randn(100000,1),-6:.5:6);
[c1,c2]=hist(rand(1000000,1)-.5,-6:.5:6);

The tests produce the following:

chi2=sum((b1-a1).ˆ2 ./(b1+a1))
chi2cdf(chi2,25)
gammainc(chi2/2,25/2)

chi2=sum((c1-a1).ˆ2 ./(c1+a1))
chi2cdf(chi2,25)
gammainc(chi2/2,25/2)

If the data sets are similar at least at the 95% level, then we expect gammainc to return a value
less than or equal to 0.95.

Fitting a function to data: least-squares fitting
Now, we’ve laid a lot of ground work. Let’s think about our time series. If we look at SST

records, for example, how can we determine whether temperatures are increasing or decreasing
over time. Let’s suppose we’re looking for a linear trend. Then

T = To + bt, (5)

UCSD—SIOC 221A: (Gille) 3

where T represents our measured temperature data, To is a constant (unknown), t is time, and b
is the time rate of change. We have lots of observations, so we really should represent this using
vectors (which we’ll indicate with bold face):

T = To + bt. (6)

We’ll want to find the best estimates of the scalars To and b to match our data. Formally, provided
that we have more than two measurements, this is an over-determined system. Of course, we’re
talking about real data, so we should acknowledge that we have noise, and our equations won’t be
perfect fits. We could write:

T = To + bt + n, (7)

where T represents our measured temperature data (as a vector), To is a constant (unknown), t is
time, and b is the time rate of change (also unknown), and since this is the real world, n is noise
(representing the part of the signal that isn’t a linear trend. Formally, provided that we have more
than two measurements, aside from the unknown noise vector, without noise, this would be an
over-determined system. Since the noise is unknown, and there are lots of independent values, the
system is formally underdetermined. But we won’t lose hope. We just move forward under the
assumption that the noise is small.

Let’s write this in a more general form as a system of equations, or a matrix equation:

Ax + n = y, (8)

where

A =

1 t1
1 t2
1 t3
...

...
1 tN

 , (9)

making A an N × 2 matrix. And y is an N -element column vector containing, for example, our
temperature data:

y =

T1
T2
T3
...
TN

 . (10)

Then x is the vector of unknown coefficients, in this case with 2 elements (e.g. x1 = To and
x2 = b).

x =

[
x1
x2

]
(11)

How can we find the best solution to this equation to minimize the misfit between the data y
and the model Ax? The misfit could be positive or negative, and absolute values aren’t mathemat-
ically tractable, so let’s start by squaring the misfit.

ε = (Ax− y)T (Ax− y) = xTATAx− 2xTATy + yTy. (12)

Then we can minimize the squared misfit. The natural route to minimization comes by taking the
derivative, and then setting the results equal to zero. Our unknown is x, so we’ll minimize in terms
of that:

∂ε

∂x
= 2ATAx− 2ATy = 0, (13)

UCSD—SIOC 221A: (Gille) 4

and this implies that
ATAx = ATy, (14)

so
x = (ATA)−1ATy. (15)

In Matlab, you’d code this as follows:

% assuming time matches the SST standard with days counting from
% January 1, 1800
% and data is the monthly sea surface temperature
plot(time+datenum(1800,1,1),data,’LineWidth’,2); hold on
A=[ones(length(time),1) time(:)];
x=inv(A’*A)*A’*data;
plot(time+datenum(1800,1,1),A*x,’r’,’LineWidth’,2)

As we’ve noted, if we want to find a trend, we define A to have a column of ones (to identify
the mean) and a column containing the time, to identify the rate of change. We can make our model
A progressively more complicated by adding additional columns. What do we do if we want to
find the annual cycle? Before I give you any answers, take a moment to think about this.

We could use:

A =

 1 cos(tr) sin(tr)
...

...
...

 , (16)

where time t is measured in days, and tr = 2πt/365.25, is the time in radians. We need the sine
and cosine because we don’t know the phase of our annual cycle exactly. You might imagine
that we could fit for the phase (e.g. sin(tr + φ)), and we could, but that would be a non-linear
fitting process, and the power of least-squares fitting won’t work if we try that—we’d quickly be
plunged into the murky world of non-linear fitting procedures, which is messy, unreliable, and not
necessary in this case.

Here’s an example

% continuing from previous example....
A2=[ones(length(time),1) time(:) sin(2*pi*time/365.25) ...

cos(2*pi*time/365.25)];
x2=inv(A2’*A2)*A2’*data;
plot(time+datenum(1800,1,1),A2*x2,’m’,’LineWidth’,2)

Orthogonality and Least-Squares Fits
Let’s think about one important detail of our fitting procedure. What would happen if we

wanted to fit T = x1 + x2tr + x3tr, that is to fit two constants to the same variable? In this
case, clearly x2 and x3 are completely indistinguishable. What happens when we try to use our
redundant functions in our matrix A?

A =

1 t1 t1
1 t2 t2
...

...
...

1 tN tN

 . (17)

UCSD—SIOC 221A: (Gille) 5

Then we find:

ATA =

 N
∑
ti

∑
ti∑

ti
∑
t2i

∑
t2i∑

ti
∑
t2i

∑
t2i

 . (18)

The second and third rows of ATA are identical, which tells us that the third row is adding no
additional information to the system. As a result, the matrix ATA is singular, and we won’t be
able to find an inverse for it. (In Matlab, when you try to do the inversion, you’ll see a message,
“Warning: Matrix is singular to working precision.”)

You probably wouldn’t try to fit coefficients to two identical functions, but you might do
something that was fairly similar. For example, T = x2tr + x3 sin(tr) poses a similar problem
when tr is near zero. In this case, the rows of ATA might not be identical, but they might be
nearly the same so that Matlab would give you an error message.

Similarly, you’ll have trouble if you try: T = x1 + x2tr + x3(1 + tr).
None of this was an issue when we used sine and cosine, because they are orthogonal, so they

contain no redundant information.

Building complexity: multiple oscillatory signals
Now let’s think about the pressure record from the Scripps pier, because we know that had a

lot of sinusoidal variability. What might we include in that fit? We might hypothesize that data
collected on the pier could be influenced by an annual cycle (1 cycle/365.25 days), a diurnal cycle
(1 cycle/24 hours), and a tidal cycle (1 cycle/0.5175 days = 1 cycle/(12 hours + 25.2 minutes)).
How would we fit for all of these components?

What is the maximum number of sinusoidal cycles that we can resolve in N points? One
possibility would be that the maximum is N cycles per N points. That would require a full si-
nusoidal oscillation squeezed between data element 1 and data element 2. But if you think about
it, we wouldn’t expect to have enough information to determine the amplitude of a sine wave that
had to squeeze itself between consecutive observations. Moreover if N cycles per N points were
the maximum, this would mean that we’d be solving for 2N coefficients with only N data points.
Clearly that would require more information than we have available.

So the maximum must be less than N . There are two ways to think about this. One way is to
think about the information content of our data. At the most basic level, if I haveN elements in my
data matrix, then at best, I can hope to have N independent equations, so I can fit N coefficients
as an exactly determined problem. So I can solve for frequencies from 0 cycles per N points to
N/2 cycles per N points, with 2 coefficients for all but the end members of my record. The other
way to think of this is to observe that you’ll need at least 2 data points per cycle to determine
even a minimum amount of information about the sine or cosine amplitudes of your data. So the
highest frequency that you can possibly detect ofN/2 cycles perN data points. This is the Nyquist
frequency and it is one of the most central concepts in time series analysis.

You might wonder if you’ll bias your results by fitting for all of the sinusoidal variability all at
once. Usually, the answer is no. Assuming that your time series is long enough, sinusoidal frequen-
cies are orthogonal to each other: there is no correlation between sin(2πt/T) and sin(2π2t/T), just
as there is no correlation between the sine and cosine components.

So we can take this to the maximum limit. Suppose we just want to fit sines and cosines to
our data. How many frequencies can we fit? If I’m going to do this, then I’ll need to make sure
that each row of my matrix equation is linearly independent, which means that I’ll want to make
sure that each column of A is orthogonal, so I can’t choose frequencies that are too closely spaced.

UCSD—SIOC 221A: (Gille) 6

Least-Squares Fitting Sines and Cosines
Least-squares fitting is particularly tidy when the functions that we use for our fit, the columns

of our matrix A, are completely orthogonal, because then the fit to one function has no impact on
the fit to the other functions.

Consider the special case where the columns of A are made up of sines and cosines, so

A =

 1 cos(ωt) sin(ωt) cos(2ωt) sin(2ωt) · · ·
...

...
...

...
...

 , (19)

where ω = 2π/T and T is the total duration of the data record. The dot product of any two columns
i and j of A is zero if i 6= j. If I have data at N evenly spaced time increments, t1, t2, ...tN , then
this orthogonality property holds for all frequencies from ω throughNω/2. Since I have a sine and
cosine at each frequency (up to frequency Nω/2 where sine might be zero at all points in time),
this means that I can define a total of N independent orthogonal columns in A.

