UCSD—SIOC 221A: (Gille) 1

Lecture 6:
Reading: Bendat and Piersol, Ch. 2.1-2.2

Recap

Last time we looked at the least-squares fits and orthogonality of sines and cosines. This will
lead us to the Fourier transform, which provides a way to re-represent data in terms of amplitudes
of orthogonal sets of sines and cosines.
The Fourier Transform

So our least-squares fit of N data to N sinusoids was clearly too good to be true, but we’re
not doing fitting here, so we’re going to proceed along this line of reasoning anyway. Our goal is
to rerepresent all of the information in our data by projecting our data onto a different basis set.
In this case we’ll take the projection, warts and all, and we want to make sure we don’t lose any
information.

So we want to represent our data via sines and cosines:

o0

x(t) = % + Z (a, cos(2mqfit) + by sin(2mq fit)) , (1)
q=1

where f, = 1/7,,, and T}, is the duration of the record (following Bendat and Piersol). Formally
we should assume that the data are periodic over the period 7,,. We find the coefficients a and b by
projecting our data onto the appropriate sines and cosines:

Ty
a, = i/ x(t) cos(2mq fit) dt (2)
1y Jo
and s
by = —/ x(t) sin(2mwq fit) dt 3)
T, Jo

solved forq = 0,1, 2,
It’s not much fun to drag around these cosines and sines, so it’s useful to recall that
exp(if) + exp(—if)

0 = 4
COS 2 ()

exp(if) — exp(—if)
21 ’

sinff = 5)
which means that we could redo this in terms of ¢ and e~%. In other words, we can represent our
data as:

[e.e] o0

w(t) = > [agexp(i2rqfit)] = Y [agexpliogt)] 6)

g=—00 g=—00

where 0, = 27q/T, and a, represents a complex Fourier coefficient. If we solved for our coeffi-
cients for cosine and sine, then we can easily convert them to find the complex coefficients a, for
exp(io,t) and exp(—io,t). Consider :

; ; b, . .
acost +bsinf = g(ew +e)+ 2_1'(6Z6 _ it 7

®)

UCSD—SIOC 221A: (Gille) 2

This tells us some important things. The coefficients for ¥ and ¢’ are complex conjugates. And
there’s a simple relationship between the sine and cosine coefficients and the e** coefficients. In-
stead of computing Zjvzl a;j cos(w;t) and Z;VZI b; sin(w;t), we can instead find Zjvzl a; exp(iw;t)
and then use the real and imaginary parts to represent the cosine and sine components. This gives
us a quick shorthand for representing our results as sines and cosines.

sidebar: see minilecture
Fourier transform in continuous form

Bracewell’s nice book on the Fourier transform refers to the data as f(z) and its Fourier
transform as F'(s), where = could be interpreted as time, for example, and s as frequency. Here I've
rewritten to roughly use Bendat and Piersol’s notation. In continuous form, the Fourier transform
of z(t) is X (w) (where w = ¢f1), and the process can be inverted to recover z(t).

X(w) = /OO x(t)e 2™ dt)
w(t) = /OO X (w)e™ duw (10)

(following Bracewell).
But there are lots of alternate definitions in the literature:

X(o) = /Oox(t)e_”"dt (11)
xz(t) = % OOX(J)eit"da (12)

or

1 > ,
X(o) = —/ x(t)e " dt 13
©) = 7= [=0 (13)
1 > ’
z(t) = — X(0)e" do 14
0 = =/ X (149
So we always have to be careful about our syntax.

Given the vast array of notation, we’re going to try very hard to stick to Bendat and Piersol’s
forms:

X(f) = /Oo:r(t)e‘””ftdt (15)
x(t) = / OoX<f)e"2”ftdf (16)

The same questions about choices of notation apply in the discrete form that we consider
when we analyze data.

Fourier transform in discrete form
We considered cosine and sine transforms, derived coefficients (a, and b,) for cosine and
sine, and then showed that we could recombine these to make complex coefficients for ¢274/1¢

UCSD—SIOC 221A: (Gille) 3

and e~7/1t We found these coefficients to be complex conjugates of each other. Since co-
sine/sine transformations and Fourier transforms using e*?274/1* are closely related, we can express
results of one in terms of the other. In other words, instead of computing Z;VZI x; cos(2m f;t) and
Z;.Vzl x; sin(27 f;t), we can instead find Zjvzl x;j exp(i27 f;t) and then use the real and imaginary
parts to represent the cosine and sine components.

To reiterate, here’s the Fourier transform in continuous form. Bendat and Piersol use the
following:

X(f) = /_ h x(t)e It dt (17)
a(t) = /_ OOX(f)e””ftdf (18)

Data come in discrete form. If they are uniformly separated (in time or space), then they are
easy to Fourier transform. The same questions about choices of notation apply in the discrete form
that we consider when we analyze data. And we can get ourselves really confused. So we have
to keep in mind one rule: we don’t get to create energy. That means that we need to have the
same total variance in our data set in the time domain as we have in the frequency domain. This is
Parseval’s theorem, and we’ll return to it.

One of the glories of the Fourier transform is that we can take all of these projections and
make them extremely efficient through the Fast Fourier Transform (FFT). In principle, FFT’s are
most efficient if you compute them for records that are a power of 2 in length, so 64 or 128 or
256 points for example. But modern FFTs are fast even if your data set doesn’t have 2" elements.
Moreover, a year doesn’t have 2" days, so trying to force a data record to conform to a length of
2™ can suppress some of the natural periodicity.

Mathematically the Matlab definitions look like this:

X = wpexp(—i2r(k —1)(n—1)/N), (19)

n=1

where frequency labels & and data labels n go from 1 to /NV. Here capital letters are used to denote
Fourier transformed variables. Matlab computes this using the command “fft”.
The inverse of the Fourier transform is computed using “ifft” and is defined to be:

Tp = % > Xyexp(i2r(k —1)(n — 1)/N) (20)

k=1
In Matlab the Fourier transform and inverse Fourier transform become:

f=£fft (x)
X_new=ifft (f)

To make Parseval’s theorem work, the variance of our data has to equal the variance of the Fourier
transform. Thus we’ll want to compare:

sum(x.”2)

sum (abs (f) . 2)
£’ xf

sum (f.*xconj (f))

UCSD—SIOC 221A: (Gille) 4

They don’t quite agree, so we’ll see that we should divide the Fourier transform by NV, the number
of data points.

What do we gain by Fourier transforming our data?

We live life in the time domain, so it’s sometimes hard to think about the world as seen in
the frequency domain. While linear trends aren’t well represented by the Fourier transform, the
Fourier tranform is particularly effective for representing sinusoidal oscillations. Solar radiation
that warms the Earth varies on a 365.25 day cycle with the seasons, and on a 24 hour cycle, with the
rising and setting of the sun. Ocean tides vary at semidiurnal (12.4 hour) and diurnal frequencies
(as well as being modulated on fortnightly and monthly intervals.) Thus if you look at data from
a tide gauge, you see oscillatory fluctuations at a variety of different frequencies, as shown in the
slides. If we solve for the tidal amplitudes, we find for example:

Symbol Frequency (cpd) Amplitude (cm) Greenwich Epoch

Ol 0.92953571 8.91 217
P1 0.99726209 5.32 224
K1 1.00273791 16.12 225
M2 1.93227361 9.97 354
S2 2.00000000 6.45 357

The complex Fourier coefficients that emerge from the fft might seem confusing, but they give
us a lot of information about our data, allowing us, for example to tell whether there is more energy
at frequency o; compared with frequency ;. The Fourier coefficients are complex so this com-
parison might seem confusing, but we’ll just examine the squared magnitudes of the coefficients:
[

Of course, if we knew the frequency exactly, we could just do a least-squares fit, but often
we aren’t exactly sure of the frequencies in question—there might be energy spread over a broad
range of frequencies, and the Fourier tranform provides us with a way to examine our data in terms
of oscillatory signals.

Questions about pier data
Here are some questions (yours plus some stray questions):

1. Why is the manual temperature warmer than the automated?
2. What is the depth of the automated sensor, and how does it compare with the manual sensor?

3. Could a mechanical system be set up to move with the water surface so that the manual and
automated systems measured at the same depth?

4. Have there been procedural changes in the manual system over time?

5. Can manual tempartures be corrected to match the automated temperatures? Why are the
two sensors different?

6. Why is the automated system set to sample at 4-minute intervals?
7. What happens when one of the sensors is down?

8. How do temperature and salinity vary seasonally, annually, interannually, and on decadal
time scales? What accuracies do we need to assess these modes of variability?

UCSD—SIOC 221A: (Gille) 5

10.
11.
12.
13.
14.

15.

16.

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

How have changes in the location of the pier influenced the long-term record? What is the
stability of the instrumentation? Do error bars evolve over time?

Does the pier create noise/flow distortion?

How well do the manual and automated records match?
Who quality controls the data, and how?

Is there visibility data?

Which of the variables associated with the pier record are measured directly, and which are
inferred?

What methods have been used to collect measurements on the pier, and how consistent are
they?

What variables are collected? What is the formal uncertainty? What is the sampling fre-
quency?

When did automated sampling start? When did automated sampling start being reliable?
What are purposes of automated vs manual systems?

What level of adjustment is applied to make manual and automated data match?
What has been published about these data?

How often are the sensors serviced?

What accounts for gaps in the data?

How hands on is the automated system? What’s really automatated?

What depths are the sensors?

Where are the sensors?

Are multiple sensors used are merged?

What is the local geographic variability?

What is the time of day of measurement? How clearly is that documented?
What does instrument failure look like in the data records?

What error flags are available for the data?

How long are records?

How is equipment calibrated? And how often?

