UCSD—SIOC 221A: (Gille) 1

Lecture 8:
Reading: Bendat and Piersol, Ch. 4.2.2, 5.2.2, 8.5.4

Recap
Last time we looked at important traits of the Fourier transform and we characterized spectra
as red, white, or blue. Now let’s actually try to compute our own spectra.

Computing spectra

We’ve covered a lot of territory—we can Fourier transform with an fft, we know some of
the properties of the Fourier transform, we’ve looked at Parseval’s theorem. Now we need to stop
beating around the bush and produce some spectra of our own.

How do we take our data and produce a meaningful measure of the power per unit frequency?
Here’s a basic approach:

1. First, we know we’re going to need to Fourier transform our data, and plot the squared
amplitudes. We’ll only need to analyze the first V/2 + 1 of the Fourier coefficients, and
we’ll look at the amplitudes of these values. (The second half of the Fourier coefficients are
complex conjugates of the first half of the record and correspond to negative frequencies.)
The frequencies corresponding to the first N/2 + 1 coefficients will run from 0 cycles per N
points to N/2 cycles per N points. So a first step is to compute:

a=fft (data)

N=length (data) ;

amp=abs (a(l:N/2+1).72; % for even N
amp=abs (a(l: (N+1)/2).72; % for odd N

2. Second, since we’re only taking half the record, we’ve thrown out half the energy in the
original data (except at frequency 0), so we’ll need to put that back in.

[o)

amp (2:end-1)=2+amp (2:end-1); % for even N

[

amp (2:end)=2%amp (2:end); % for odd N

3. Having gotten this far, we’d better check that Parseval’s theorem is working for us. We’ll
need to see that the energy in the initial record matches the energy in the Fourier transform.
If we don’t worry about units, then in Matlab we just need to divide by /N to make our
normalization work.

amp=amp/N;

If we want to make this make sense for the temporal and spatial sampling of our observations
we might need to scale our results to reflect real time and frequency units. (Fortunately
multiplicative scalings won’t influence the shape of our spectra, so we can always delay
sorting out the details.)

4. We can plot what we have. Typically we use a loglog axis (or at least semilogy). We’ll need
to compute our frequencies thoughtfully. So for example if we have measurements every
361 seconds, then we might want to convert to cycles per hour by scaling the frequency
appropriately.

UCSD—SIOC 221A: (Gille) 2

scale = 1/361 x 3600; % to convert from 1 cycle/2 pts to 0.5 cycles
% per 361 s to 0.5 cycles * 3600/361 /hr

frequency=(0:N/2) /N » scale; % for N even

frequency=(0:N/2-1) /N % scale; % for N odd

loglog (frequency, amp)

5. Now, we have a problem in that our results are way too noisy. We’ll have a hard time
distinguishing signal from peak. So clearly we’re going to need more realizations. To do
this, one common practice is chop our data into multiple segments. As a first step, we can
just cut the data into M segments of N /M points each. For example, here’s a brute strenght
approach:

N=length (data); M=6; p=N/M;

data=reshape (data,N/M,M); % this gives us an array with N/M points
% per column and M columns

b=fft (data); % this computes the fft for each column

amp_b=abs (b(l:p/2+1,:)).72; amp_b(2:p/2,:)=2+amp_b (2:p/2,:)/p;

loglog (frequency,mean (amp_b, 2))

Here you can debate whether you should be plotting the sum (to conserve energy) or the
average (to represent a mean spectrum for a data set of length p. In most cases you’ll want
the average.

Now the critical question? How many degrees of freedom does this record have? Is this M to
represent M segments? Maybe you can think of it that way, but by convention, we get one degree
of freedom for the real part and one for the imaginary part, so 2 per segment. We’ll need this to
compute error bars, but let’s start by noting that our error bars are not the same as the standard
error of the mean. We’re computing the sum of M squared quantities, and that’s going to depend
on something that looks like a x? distribution.

When we compute spectra from segments, clearly there are tradeoffs: if I have N data points
total, I can have lots of segments with few points in each segment, or few segments with more
points per segment. The Nyquist frequency will be the same whatever I choose, since that’s de-
termined by the interval between observations. But the low-frequency limit will differ, as will the
increment between frequencies (which is determined by the lowest resolved frequency). There’s no
rule for how to handle this, and your decisions will depend whether you want small uncertainties
or high resolution in frequency space.

Detrending

The Fourier transform of a linear trend puts energy into every possible frequency, meaning
that if you don’t detrend your data, any residual trend will give you a red spectrum. You can spend
a lot of energy interpreting red spectra that result from linear trends, but they can really be viewed
as an artifact of the data. Consider the linear trend in SST that we examined earlier in class. That
linear trend produces a strongly red spectrum. To detrend in Matlab, you can least-squares fit, or
simply use Matlab’s detrend function:

o)

% import weekly CO2 records from Mauna Loa
a=importdata ("weekly_in_situ_co2_mlo.csv’,’,’,44);
% segment data as 10 segments of length 303;

UCSD—SIOC 221A: (Gille) 3

data=reshape(a.data(1:3030,303,10);

% detrend each column, and then Fourier transform each column
fdata=fft (detrend (data));

We can estimate the spectral slope by eye by looking at the drop in y per order of magnitude
in x. If the spectrum drops one order of magnitue in y for a half an order of magnitude increase in
x, then it has a slope of f~2. More formally, you could determine this slope through a least-squares
fitting procedure.

Windowing: A quick introduction

Often we also want to smooth out the edges. The discrete Fourier transform implicitly as-
sumes that our record repeats again and again, so any discontinuity between the beginning and
end of the record can create a step function. To minimize that, we can multiply each segment
by a function that minimizes the impact of the edges. (This sounds like it might grossly destroy
our spectrum, but we use something that’s a bit Gaussian, so its Fourier transform is also fairly
Gaussian, and things come out reasonably.) We’ll talk more about this, but for now, let’s just try a
Hanning window:

7i A e 0.5+ 0.5 cos(mt/T). (1

w(t) = cos < 5

7rt) 1 4-cos(nt/T)
This is defined to be centered around 0, for || < T. So we can multiply our full record by the
Hanning window. (Be sure to detrend first, so that you aren’t zeroing out the mean.)

% detrend each column, Hanning window,
% and then Fourier transform each column
fdata=fft (detrend(data) .+ (hanning (303) xones (1,10));

Exercises

What are the Fourier transforms of the following functions: z(t) = 1, z(t) = cos(2w ft), z(t) =
sin(2nm ft), x(t) = exp(—t%/20?), x(t) = ?

In our examples, note that the Fourier transforms of single frequency sine and cosine give
a single peak. (This uses the Kronecker delta, d,,,.) The Gaussian (z(t)), has a transform of
a Gaussian, though it’s a bit distorted in this finite-length log-log domain. Formally if z,(t) =
e~/ then X;(f) = v2moe 217" or with coefficients z;(t) = \/a/me™*"" corresponds
to Xs(f) = e~™1*/(@)which says in essence that the Fourier transform of a Gaussian is still a
Gaussian. The normalization for this is dependent on our exact notation for the Fourier transform.
And the linear pattern should really be thought of as a repeating sawtooth. It’s Fourier transform
will is a dramatically red spectrum. What does this mean for the Fourier transform of any long-term
trend?

Spectral Uncertainties

The problem with all of the spectra that we’ve computed so far (the amplitude of the Fourier
Transform) is that we have no way to evaluate the uncertainty. By eye we can see that it’s fairly
noisy. We know from computing means that the error of the mean decreases as we average more
quantities together.

How do we incorporate more data into our spectra? You might imagine that you could im-
prove your spectrum by extending the input time series from N to 2N data points for example.

UCSD—SIOC 221A: (Gille) 4

Unfortunately, although adding data points will change your spectrum, it won’t reduce your noise
or make the spectrum more precise at any individual frequency. Instead it will increase the number
of frequencies for which you obtain results from N/2 to N.

Error bars for spectra rely on a principle similar to what we used when we estimated the
standard error of the mean. Our uncertainties in our spectra decrease as we average more spectra
together. The challenge is to figure out how to obtain more spectra that can be averaged together.
Typically what we do is to break our time series into segments, compute spectra for each of the
segments, and average these to get a mean spectrum. Since we’re averaging squared quantities (the
spectral amplitudes) the distribution of the sum will follow a x? distribution. And we’ll use this
to estimate the uncertainties. When we compute our estimate of the spectrum of our data, we’ll
compute coefficients a(f), and for M segments, at frequency f, the estimated spectrum will be

B() = a(f)F) = 5 > la()P @

(Since we actually had two degrees of freedom for each segment, this will give us v = 2n degrees
of freedom.)

Now to estimate errors the whole argument stems from a notion that there is a true spectrum
E(f), which we don’t know, and our best estimate F(f), that we’ve computed, but which might
be noisy. We could consider the difference between E and E, but this gets hairy quickly. Besides
we’re going to look at our results in log/log space anyway. So let’s look at the ratio of the two.
Recall that In(E/E) = In(E) —In(E). We can define a variable that represents this sum of squares
normalized by the true spectrum

E(f)

where [, is our best estimate of the spectrum from real observations, when we have v degrees of
freedom. This variable should have a x? distribution with degrees of freedom. Thus we’ll always
consider the ratio F(f)/E(f), where we use /2 data segments.

So even though we don’t know £, we know that the ratio of vEt E (vE /E)is a x* quantity.
The expectation value of this ratio is v, and the standard deviation is (y?) — (y)? = 2v (see Bendat
and Piersol, section 4.2.2). From that we can infer that with two degrees of freedom, the standard
deviation (E?) — (E)2 = 2/vE2? = E2, which means that the standard deviation is equal to the
original value. Clearly we need more samples.

Now in reality, we don’t care about the details of 2 but rather the probability that our estimate
of the spectrum E is close to or far from the unknown true spectrum F, so we’re going to look at
the probability that v E(f)/E(f) falls within a fixed range. So we want to use the x? distribution as
a probability distribution and ask about the probability that £(f)/E(f) should be within 4 some
range of 1. Formally, the probability that the estimated spectrum should be close in value to the
true spectrum is:

3)

E(f)
E(f)

so if we want to find a 95% significance level, we set o to 0.05. We’ll want to know the value of >
that corresponds to a given point on the cdf, so for this we use the inverse 2 function (”chi2inv” in
Matlab). So we can invert this relationship to provide the probability that the true value is within a

P <X3,l—o¢/2 <v < X12/,oz/2> =l-a “4)

UCSD—SIOC 221A: (Gille) 5

particular range of the observed value:

X12/,1—a/2 E(f) Xl%,a/Z _
P(s B e)T ©
v E(f) v
P > 2> =1- (6)
(X?/,la/2 E(f) Xz,a/2 i
g (—VQEU Lo wy > D) <1)
XV,l—a/Z XV,a/Q
v E(f) v
P < = < =1- ()
(Xi,a/2 E(f) XZ,lfa/Q "

Whether you use x? or its reciprocal, the ratio between the high and low error bars should be the
same, and the ratio will be what matters.

This error formulation differs from the usual error bars that we’re used to seeing where we
say for example that the true temperature should be the measured temperature plus or minus an
uncertainty: 7" = T + 67. We can develop a similar expression for the true spectrum: E(f) is in
the range between vE(f)/ Xo o /o and vE(f)/ Xo1—a /o> Where v is twice the number of segments.
This expression isn’t very easy to interpret, since it varies as a function of frequency, and the
estimated value E(f) is not at the mid-point of the range.

Instead we’ll keep in mind that we’ve computed the uncertainty for the ratio E(f)/E(f), and
the probabilities for this ratio does not depend on frequency. On a log plot, error bars defined by
the range between v/ XZ,a /o and v / X?/J—a /o are the same size at all frequencies, so we can easily
compare spectral peaks at different frequencies.

Some statistics books include look-up tables for x?, but we can compute it directly in Matlab.
For v = N/2 data segments, the error limits are:

err_high = N/chi2inv (.05/2,N);
err_low = N/chi2inv(1-.05/2,N);

We can plot these values as:
semilogy ([f f], [err_low err_high]x*A);

where we set the frequency f and the amplitude A, so that the error bar ends up positioned in a
convenient spot on the plot.

Now to have v = N/2 data segments, we have to split our long data record into shorter
segments. We can do this by taking M data points at a time:

N=length (data) ;
M=segment_length; % define this value
for n=1l:floor (N/M)
d=data((n-1)*M+1:n*M); %select data for the nth segment

fd(:,n)=fft (d); % compute fft
end
sd=sum (abs (fd(1:M/2+1,:))."2,2) /N; % sum over all spectra

% (sum over 2nd index)

UCSD—SIOC 221A: (Gille) 6

sd(2:end)=sd(2:end) *2;

nu=2xfloor (N/M) ;
err_high = nu/chi2inv (.05/2,nu);
err _low = nu/chi2inv(1-.05/2,nu);

semilogy (0:M/2,sd, [M/4 M/4], [err_low err_high]*sd(M/4))

Spectral resolution

Suppose I have 1000 points collected over 1 day. Will I be able to tell the difference between
the M2 (12.42 h) and solar semi-diurnal S2 (12 h) tides? What are the frequencies of these peaks?
For M2, we have 24 h/12.42 h/1000 = 1.9324 cycles/1000 pts = 0.0019 cycles/measurement. For
S2, we have 24 h/12 h/1000 = 2 cycles/1000 pts = 0.0020 cycles/measurement

The lowest frequency we can measure is 1 cycle/1000 points, and we count by integers: 2
cycles/1000 points, 3 cycles/1000 points, etc. So can we distinguish these peaks? How many
measurements would we need, or how long a measurement period, to separate M2 and S2? Can
we measure more frequently to separate M2 and S2? More density won’t do the trick. We definitely
need more data point?

So how long a record do we need? To separate two frequencies, we require that the record
length be greater than the frequency resolution. Since Ao = 1/N, then N = 1/Ao. So to separate
12.42 h and 12 h, what does that require? We need to be able to separate 1.9324 cycles/day from 2
cycles/day. The frequency separation A f is 0.0676 cycles/day. So

1 1

T:_:—
Af 2—1.9324

= 14.79 days.)]

Extracting phase information from the Fourier coefficients

After all this effort to square Fourier coefficients, you might wonder what the real and imag-
inary parts are really good for. They are useful for sorting out the phasing of your sinusoidal
oscillations. When is the amplitude at a maximum? To do this you can keep in mind that

Acos(ot + ¢) = acos(ot) + bsin(at). (10)
This can be rewritten:
cos(at) cos(¢) — sin(ot) sin(¢) = % cos(at) + %sin(at), (11)
which means that
S = cos(9) (12)
b
a1 - sin(¢) (13)
SO
¢ = atan (—é) . (14)
a

Actually there’s more information in the Fourier coefficients than this conveys, since you know
the signs of both a and b, and not just their relative magnitudes. The arctangent function doesn’t
distinguish +45°from -135°, but we can. In some numerical implementations, you can address this
using a function called atan2.

UCSD—SIOC 221A: (Gille) 7

phi = atan2(-b,a);

Some further convolution examples

Let’s return to convolution for one more example. We’ve pointed out that convolution in the
time domain is equivalent to multiplication in the frequency domain.

What if I compute the convolution of a boxcar filter with itself?

y(r) = / h(t)h(T — t)dt (15)

R

= / h(t —t)dtfor0 < 7 —t < 1 (16)
o

= / h(t —t)dtfor -7 < =t <1—7 (17)
o

= /dtfor7—1<t<7' (18)
0
Jo dt =T, for0 < 7 <1

=) (19)
[jdt=1—(1—1)=2—7 forl <7 <2

This is definitely easier to consider graphically, and it will show that boxcar filter convolved with
itself becomes a triangle filter.

What if we repeat this again and again? It’s actually analogous to what we considered for the
central limit theorem. Applying a filter to a filter to a filter will eventually give us a Gaussian.

Spectra and auto-covariance
Now let’s return to our spectra. When we talked about Parseval’s theorem, we took a look at
autocovariance. That was the convolution of z(t) with its time reversal, x(—t).

y(r) = / x(t)z (T + t)dt. (20)
More formally, we might write this autocovariance as R, (7).
R..(1) = / x(t)x(T + t)dt. 21
Now, what if we Fourier transform R?
Sex(o) = / Ry (T)e "7 dr. (22)
Now if we return to our discrete Fourier transform, we can write that mean of our data is:
1 (7 }
(r) = o /Tm(t)elo dt = ay. (23)
and the variance is
1 (T
(x*xx) = —/ () (t) dt — |ag|?. (24)
2T) ¢

UCSD—SIOC 221A: (Gille) 8

Notice that we’ve remembered to subtract out the mean (our frequency zero Fourier coefficient).
In similar notation, we can write the covariance (for finite record length 27") as:

T
R(r) = % /_T 2 (D)2t + 7) dt — |ao|?. 25)

This let’s us write out an expression for the variance R in terms of the discrete Fourier coefficients:

1 [T . ,
R(r) = T T[Zafle_w”'fZamew’”(t”)] dt (26)

1 ! ()
— * —10mT _— i(—ontom)t
= En gm a, ame 5T /_Te dt 27
= E ‘am|2eiwm{/ - ’a0’2 (28)

where we used a Kronecker delta (6,,,) to eliminate the integral with e!(=7»+om)! except when
n = m, and we subtracted a% at the end to match our original definition. This tells us that the
Fourier transform of the autocovariance can be expressed by the squared Fourier coefficients. (So
we could avoid the Fourier transform completely and just work with the auto-covariance.)

In this form, Parseval’s theorem simply says that

T

R(O) = % 2*(£)2(10) dt — |ao? (29)
-7

= D laml* — ol (30)

meaning that the variance of x is the sum of magnitudes of the Fourier coefficients.
Now really we need to keep in mind that we’re integrating over time and integrating over
frequency space. Parseval’s relationship told us:

/OO 22 (t)dt = /Oo | X (o) do, (31

o0 [e.e]

and this implies that we’re going to need to keep track of our frequency inforamtion carefully.
In essence |a,,|? does not have the same units as %, because z is integrated in time and |a,,| is
integrated in frequency. If the total integral of 2 is equal to the total integral of | X |?, then we’re
going to need to adjust by factors of do, and this will influence how we label our axes.

