
UCSD—SIOC 221A: (Gille) 1

Lecture 9: Attaching uncertainties to spectra; normalizing; deciding how many degrees of freedom we have
Reading: Bendat and Piersol, Ch. 4.2.2

Recap
So far this class has looked at methods for computing spectra. We made sure that we under-

stood how to normalize our amplitudes, we segmented data so that we’d have something to average,
and we detrended to remove the bias associated with large-scale trends. We’ve also identified the
the lowest resolved frequency and the Nyquist frequency (the highest frequency for which we have
any information.) We’ve almost managed to produce useful spectra, but we need to assign error
bars and figure out how many degrees of freedom we have, and we need to make sure that every-
thing is normalized correctly and add units. We’ll also need to put a little consideration into edge
effects.

Spectral Uncertainties
The problem with all of the spectra that we’ve computed so far (the amplitude of the Fourier

Transform) is that we have no way to evaluate the uncertainty. By eye we can see that it’s fairly
noisy. We know from computing means that the error of the mean decreases as we average more
quantities together.

How do we incorporate more data into our spectra? You might imagine that you could im-
prove your spectrum by extending the input time series from N to 2N data points for example.
Unfortunately, although adding data points will change your spectrum, it won’t reduce your noise
or make the spectrum more precise at any individual frequency. Instead it will increase the number
of frequencies for which you obtain results from N/2 to N .

Error bars for spectra rely on a principle similar to what we used when we estimated the
standard error of the mean. Our uncertainties in our spectra decrease as we average more spectra
together. The challenge is to figure out how to obtain more spectra that can be averaged together.
Typically what we do is to break our time series into segments, compute spectra for each of the
segments, and average these to get a mean spectrum. Since we’re averaging squared quantities (the
spectral amplitudes) the distribution of the sum will follow a χ2 distribution. And we’ll use this
to estimate the uncertainties. When we compute our estimate of the spectrum of our data, we’ll
compute coefficients a(f), and for M segments, at frequency f , the estimated spectrum will be

Ê(f) = 〈|a(f)|2〉 =
1

n

n∑
i=1

|a(f)|2 (1)

(Since we actually had two degrees of freedom for each segment, this will give us ν = 2n degrees
of freedom.)

Now to estimate errors the whole argument stems from a notion that there is a true spectrum
E(f), which we don’t know, and our best estimate Ê(f), that we’ve computed, but which might
be noisy. We could consider the difference between E and Ê, but this gets hairy quickly. Besides
we’re going to look at our results in log/log space anyway. So let’s look at the ratio of the two.
Recall that ln(Ê/E) = ln(Ê)− ln(E). We can define a variable that represents this sum of squares
normalized by the true spectrum

y = ν
Êν(f)

E(f)
(2)

where Êν is our best estimate of the spectrum from real observations, when we have ν degrees of
freedom.

UCSD—SIOC 221A: (Gille) 2

The spectrum is an average (or sum) of squared amplitudes, which means that the ratio of Ê
to E(f) should have a χ2 distribution with ν degrees of freedom. Thus we’ll always consider the
ratio Ê(f)/E(f), where we use ν/2 data segments.

Even though we don’t know E, we know that the ratio of Ê to E (Ê/E) should be about
1. The spectrum is an average (or sum) of squared amplitudes, which makes it a χ2 quantity, and
since χ2 statistics have an expectation value corresponding to degrees of freedom, it turns out to
be convenient to scale it by ν, so that y has an expectation value of ν. The standard deviation is
〈y2〉 − 〈y〉2 = 2ν (see Bendat and Piersol, section 4.2.2). From that we can infer that with two
degrees of freedom, the standard deviation 〈Ê2〉 − 〈Ê〉2 = 2/νE2

0 = E2
0 , which means that the

standard deviation is equal to the original value. Clearly we need more samples.
Now in reality, we don’t care about the details of χ2 but rather the probability that our estimate

of the spectrum Ê is close to or far from the unknown true spectrum E, so we’re going to look at
the probability that νÊ(f)/E(f) falls within a fixed range. So we want to use the χ2 distribution as
a probability distribution and ask about the probability that Ê(f)/E(f) should be within ± some
range of 1. Formally, the probability that the estimated spectrum should be close in value to the
true spectrum is:

P

(
χ2
ν,1−α/2 < ν

Ê(f)

E(f)
< χ2

ν,α/2

)
= 1− α (3)

so if we want to find a 95% significance level, we set α to 0.05. We’ll want to know the value of χ2

that corresponds to a given point on the cdf, so for this we use the inverse χ2 function (”chi2inv” in
Matlab). So we can invert this relationship to provide the probability that the true value is within a
particular range of the observed value:

P

(
χ2
ν,1−α/2

ν
<
Ê(f)

E(f)
<
χ2
ν,α/2

ν

)
= 1− α (4)

P

(
ν

χ2
ν,1−α/2

>
E(f)

Ê(f)
>

ν

χ2
ν,α/2

)
= 1− α (5)

P

(
νÊ(f)

χ2
ν,1−α/2

> E(f) >
νÊ(f)

χ2
ν,α/2

)
= 1− α (6)

P

(
ν

χ2
ν,α/2

<
E(f)

Ê(f)
<

ν

χ2
ν,1−α/2

)
= 1− α (7)

Whether you use χ2 or its reciprocal, the ratio between the high and low error bars should be the
same, and the ratio will be what matters.

This error formulation differs from the usual error bars that we’re used to seeing where we
say for example that the true temperature should be the measured temperature plus or minus an
uncertainty: T = T̂ ± δT . We can develop a similar expression for the true spectrum: E(f) is in
the range between νÊ(f)/χ2

ν,α/2 and νÊ(f)/χ2
ν,1−α/2, where ν is twice the number of segments.

This expression isn’t very easy to interpret, since it varies as a function of frequency, and the
estimated value Ê(f) is not at the mid-point of the range.

Instead we’ll keep in mind that we’ve computed the uncertainty for the ratio Ê(f)/E(f), and
the probabilities for this ratio does not depend on frequency. On a log plot, error bars defined by
the range between ν/χ2

ν,α/2 and ν/χ2
ν,1−α/2 are the same size at all frequencies, so we can easily

compare spectral peaks at different frequencies.

UCSD—SIOC 221A: (Gille) 3

Some statistics books include look-up tables for χ2, but we can compute it directly in Matlab.
For N data segments and ν = 2 ∗N degrees of freedom, the error limits are:

err_high = nu/chi2inv(.05/2,nu);
err_low = nu/chi2inv(1-.05/2,nu);

We can plot these values as:

semilogy([f f],[err_low err_high]*A);

where we set the frequency f and the amplitude A, so that the error bar ends up positioned in a
convenient spot on the plot.

Now to have M data segments (and ν = 2M degrees of freedom), we have to split our long
data record into shorter segments. We can do this by taking N data points at a time:

Ntotal=length(data);
N=segment_length; % define this value
for n=1:floor(Ntotal/N)
d=data((n-1)*N+1:n*N); %select data for the nth segment
fd(:,n)=fft(d); % compute fft
end
sd=sum(abs(fd(1:N/2+1,:)).ˆ2,2)/N; % sum over all spectra

%(sum over 2nd index)
sd(2:end)=sd(2:end)*2;

nu=2*floor(Ntotal/N);
err_high = nu/chi2inv(.05/2,nu);
err_low = nu/chi2inv(1-.05/2,nu);

semilogy(0:N/2,sd,[N/4 N/4],[err_low err_high]*sd(N/4))

Getting the units right
We’ve talked about units for spectra, but let’s lay everything out in one place. Our fundamental

principle is that we want Parseval’s theorem to work. But this gets a tiny bit messy when we average
multiple frequencies. Still the basic rule of Parseval’s theorem is not that the sum of the squares
equals the sum of the squared Fourier coefficients, but rather that the integrated variance equals the
integral under the spectrum.

Some instructions say to divide the spectral estimate by N2 and then divide by df = 1/T , in
effect multiplying by T/N2. But my sample code so far has only had a division by N . And some
of you complained in problem set 4 about the division by N rather than

√
N . Why?

In the discrete Fourier transform, we have:

N−1∑
n=0

x2
n =

1

N

N−1∑
k=0

|Xk|2, (8)

UCSD—SIOC 221A: (Gille) 4

or after spectral normalizations, maybe we write

N−1∑
n=0

x2
n =

1

N

|X0|2 +

(N/2−1∑
k=1

2|Xk|2 + |XN/2|2
 (9)

≈ 1

N

(N−1)/2∑
k=0

2|Xk|2. (10)

For this discussion, to keep the equations compact, we’ll use the approximation in the final line,
neglecting the fact that the mean and the k = N/2 value should k = N/2 value should not be
doubled. Many times we work with this form, since it gives us meaningful spectral slopes.

If I take the limiting case in which xn has one frequency, then I can easily determine how to
normalize X0. Suppose xn is a constant, so xn = x. Then

N−1∑
n=0

x2
n = Nx2 =

1

N

N−1∑
k=0

|Xk|2 =
1

N
|X0|2, (11)

since only frequency 0 has a non-zero Fourier coefficient. This implies that:

x =
|X0|
N

(12)

Similarly, if x = a cos(ωt), then

N−1∑
n=0

x2
n =

N−1∑
n=0

a2 cos2(ωt) =
Na2

2
=

1

N

N−1∑
k=0

|Xk|2 =
2

N
|Xk|2, (13)

which tells us how to determine the amplitude a:

a =
2|X0|
N

. (14)

In continuous form, we had a form more like this:∫ ∞
−∞

x2(t)dt =

∫ ∞
−∞
|X(f)|2 df (15)

where f is frequency in cycles per unit time (or we might use σ = 2πf sometimes, where σ is
frequency in radians per unit time.) If we want this integral form to work for our real data, then we
have to be a bit careful with our normalizations. We’re going to want the area under the curve in
our spectrum to be equal to the total variance integrated over time. So if total integrated variance
is

variance =
N−1∑
n=0

x2
n ∆t (16)

where ∆t = T/N . Then the integrated spectrum should be

variance =
α

N

N/2−1∑
k=0

2|Xk|2 ∆f, (17)

UCSD—SIOC 221A: (Gille) 5

where ∆f = 1/(N∆t) = 1/T , and we’ll need to figure out α to ensure that the spectral estimator
that we compute still properly adheres to Parseval’s theorem. This implies that we might imagine
normalizing our spectra to have:

N−1∑
n=0

x2
n∆t =

α

N

N/2−1∑
k=0

2|Xk|2∆f =
∆t

N∆f

N/2−1∑
k=0

2|Xk|2∆f =
T 2

N2

N/2−1∑
k=0

2|Xk|2∆f (18)

Or maybe this makes for units that aren’t easily compared, so we could normalize our spectra to
represent the average energy per unit time in the time domain, and adjust the frequency domain
accordingly:

1

T

N−1∑
n=0

x2
n∆t =

1

N∆t

N−1∑
n=0

x2
n∆t (19)

=
T

N2

N/2−1∑
k=0

2|Xk|2∆f (20)

=
(∆t)

N

N/2−1∑
k=0

2|Xk|2∆f (21)

=
1

N2∆f

N/2−1∑
k=0

2|Xk|2∆f (22)

This uses a normalization with an additional factor of N ∆f relative to what we got out of our
initial discrete Fourier transform.

Alternatively, you could choose to express this in terms of the Nyquist frequency

1

T

N−1∑
n=0

x2
n∆t =

1

N2∆f

N/2−1∑
k=0

2|Xk|2∆f (23)

=
1

N2fNyquist

N/2−1∑
k=0

2|Xk|2∆f (24)

so we could divide our spectrum by twice the Nyquist frequency to have energy in units appropriate
for comparing if we wanted to have our integrals match.

This isn’t always the way we think about this, but it serves as our reminder that we should
think about the units of our spectrum. What we know is that integral of our spectrum over a certain
frequency range should give a measure of the signal variance:

variance in a band =

∫ f+∆f/2

f−∆f/2

|X(f)|2 df (25)

So if we expand this out, this implies that the units of |X(f)|2 should be equivalent to variance
divided by frequency, so it’s our reminder that we’ll label the y-axis units as the squared units of x
divided by frequency, with a normalization to account for the units of time in our data.

The Fourier Transform of a Boxcar

UCSD—SIOC 221A: (Gille) 6

When we deal with data records of finite length, we’re always taking finite sized segments of
data, sort of like Fourier transforming a boxcar filter. Usually we think of a Fourier transform of
this form:

X(f) =

∫ ∞
−∞

x(t)e−i2πft dt. (26)

If x(t) is a boxcar filter, this becomes:∫ ∞
−∞

h(t)e−i2πft dt =

∫ 1/2

−1/2

e−i2πft dt =
e−i2πft

−i2πf

∣∣∣∣1/2
−1/2

=
ei2πf/2 − e−i2πf/2

i2πf
=

sin(πf)

πf
(27)

This is the sinc function, which can be written as:

sinc (x) =
sin(x)

x
(28)

or (for digital signal processing)

sinc(x) =
sin(πx)

πx
. (29)

We’ll try to use the second definition, the “normalized sinc function”, since we’re trying to use a
frequency f that needs to be multiplied by 2π.

Remember that convolution in the time domain corresponds to multiplication in the frequency
domain. In this case, we’re doing the opposite. We multiplied our data by a boxcar window in the
time domain, and that’s equivalent to convolving with a sinc function in the frequency domain:

X̂(f) =

∫ ∞
−∞

X(g)W (f − g) dg (30)

where

W (f) =
sin(2πfT)

2πfT
= sinc (2fT) , (31)

for a record length of 2T.
Corresponding, the spectrum is convolved withW (f)2 = sinc(2fT)2. This has a central peak

of width ∆f = ±1/(2T). The window will have a maximum value

|W (f)|2 < (2πfT)−2 (32)

The side lobes of the window are definitely problematic. And it turns out that we’re not stuck
with them. If we can widen the central peak of W (the Fourier transform of our window), we can
lower the impact of the side lobes. To do this, we’ll want to forego the rectangular window in the
time domain and choose something that lets us attenuate the beginnings and ends of each segment
of our data. What if we chose a triangle window? That will already give us fewer side lobes.

But we can keep going to find a window that looks more like an exponential. Leading possi-
bilities:

1. Cosine taper:

w(t) = cosα
(
πt

2T

)
(33)

with α = [1, 4].

UCSD—SIOC 221A: (Gille) 7

2. Hanning window or “raised cosine” window (developed by von Hann):

w(t) = cos2

(
πt

2T

)
=

1 + cos(πt/T)

2
= 0.5 + 0.5 cos(πt/T) (34)

Windowing: A quick introduction
When we compute spectra, in addition to detrending, we also want to smooth out the discon-

tinuities between our repeated segments, since the discrete Fourier transform implicitly assumes
that our record repeats again and again, so any discontinuity between the beginning and end of the
record can create a step function. To minimize that, we can multiply each segment by a function
that minimizes the impact of the edges. (This sounds like it might grossly destroy our spectrum,
but we use something that’s a bit Gaussian, so its Fourier transform is also fairly Gaussian, and
things come out reasonably.) There are a number of options, but for now let’s just try a Hanning
window (or taper), which we’ll multiply by our full data record: (Be sure to detrend first, so that
you aren’t zeroing out the mean.)

% detrend each column, Hanning window,
% and then Fourier transform each column
fdata=fft(detrend(data).*(hanning(303)*ones(1,10));

Sidebar: Some further convolution examples
Let’s return to convolution for one more example. We’ve pointed out that convolution in the

time domain is equivalent to multiplication in the frequency domain.
What if I compute the convolution of a boxcar filter with itself?

y(τ) =

∫ ∞
−∞

h(t)h(τ − t)dt ... definition of convolution (35)

=

∫ 1

0

h(τ − t)dt for 0 < τ − t < 1 ... adjust integration limits to represent h(t)(36)

=

∫ 1

0

h(τ − t)dt for −τ < −t < 1− τ ... subtract τ (37)

=

∫ 1

0

dt for τ − 1 < t < τ ... reverse sign from −t to +t (38)

=

{∫ τ
0
dt = τ, for 0 < τ ≤ 1∫ 1

τ−1
dt = 1− (τ − 1) = 2− τ for 1 < τ ≤ 2

(39)

The final step requires some examination of the limits of integration. We require that t be between
0 and 1, but τ can have a broader range. We can impose limits on t or on τ , somewhat separately.
First, we worry only about the upper limit. If t < τ , and 0 < t ≤ 1, then we can consider a case
when 0 < τ ≤ 1, while imposing the lower limit of the integral. This gives us limits of integration
from 0 to τ for 0 < τ ≤ 1. If we consider only the lower limit, so that τ − 1 < t with 0 < t ≤ 1
then τ can be between 1 and 2, with integration limits from τ − 1 to 1. In any case, the results
produce a triangle.

This is definitely easier to consider graphically, and it will show that boxcar filter convolved
with itself becomes a triangle filter.

What if we repeat this again and again? It’s actually analogous to what we considered for the
central limit theorem. Applying a filter to a filter to a filter will eventually give us a Gaussian.

