
UCSD—SIOC 221A: (Gille) 1

Lecture 10:
Reading: Bendat and Piersol, Ch. 5.2.1

Recap
Last time we looked at the sinc function, windowing, and detrending with an eye to reducing

edge effects in our spectra. We’ve got a full recipe, but in this case, there’s more than one way to
bake a cake. Is there another way to do this? First a quick diversion to Monte Carlo simulation....

Monte Carlo simulation: How to avoid the traps imposed by standard statistical assumptions
(and how to fake your way as a statistician through computational inefficiency rather than
clever mathematics)

Most of the time, we estimate spectral error bars using basic statistical assumptions—that
data are normally distributed, that we have enough samples for the central limit theorem to apply,
that statistics are stationary. These assumptions make our statistical models tractable—we end up
with equations we can manipulate, allowing us (or clever statisticians 100 years ago) to derive
simple equations that give us rules for how systems should behave. But what happens when those
assumptions break down? Or what happens when we have little doubts about the validity of the
statistical model. We can always resort to a Monte Carlo process. In Monte Carlo methods, we
throw theory on its head and use an empirical approach to generate many realizations of our data
set, with noise appropriate to our problem.

As an example, consider the problem of determining the standard error of the mean. When
we discussed it in class, we did a quick derivation to show that the standard error of the mean is
σ/
√

N , where σ is the standard deviation and N is the effective degrees of freedom. But what
if I didn’t trust this realization? I could generate a large number of realizations of my data with
noise typical of the real data, compute means for each realization, and look at the statistics of those
values.

So let’s put this to work. Suppose I’m computing the mean of N = 500 data points. With
one sample, I can compute the mean µ and standard deviation σ, and standard error σ/

√
500. But

I might wonder if µ is really representative. So I can generate an ensemble of fake data, perhaps
100 data sets based on adding Gaussian white noise (or non-Gaussian white noise) to the real data.
Each of these data sets will have a mean µi and a standard deviation σi. And I can look at the
standard deviation of all of the µi values. I can also look at the pdf of my µi’s and other higher
order statistics. For example:

A=randn(500,100);
mu=mean(A);
sigma_A=std(A);
std_A=sigma_A/sqrt(500);
[std(mu) mean(std_A)] % compare standard deviation of means

% vs standard error

Now we could expand on our example and ask, what if our noise were non-Gaussian or gappy
or had other problems, and we could adjust our Monte Carlo process appropriately.

Filtering in the frequency domain
Last time, when we talked about windowing, we noted that windowing in the time domain is

equivalent to convolution in the frequency domain (and filtering in the time domain is equivalent
to multiplication in the frequency domain.) This could lead you to an interesting conclusion. What

UCSD—SIOC 221A: (Gille) 2

if you skipped all the windowing and just did convolutions (i.e. filtering) in the frequency domain?
In the limit in which you choose the same filter, these options should be the same.

This approach was originally developed by Daniell and is nicely discussed by von Storch and
Zwiers (see their section 12.3.11). Daniell’s original idea was to run a moving average over the
Fourier transform of the full record. In this case the confidence intervals are determined by:

P

(
χ2

ν,1−α/2 < ν
Ê(σ)

E(σ)
< χ2

ν,α/2

)
(1)

where ν in this case is 2 × the number of frequencies averaged together.
The advantages of this approach are that it provides an unbiased estimate of the true spectrum.

The width of our averaging forces us to tradeoff bias (minimized if we do less averaging) vs
variance (minimized with more averaging). One virtue of averaging in the frequency domain is that
we can apply different levels of averaging (with different error bars) depending on the frequency.

Using the auto-covariance to think about spectra.
Now let’s look at spectra from a different perspective. When we talked about Parseval’s

theorem, we took a look at autocovariance. That was the convolution of x(t) with its time reversal,
x(−t).

y(τ) =

∫ ∞

−∞
x(t)x(τ + t)dt. (2)

More formally, we might write this autocovariance as Rxx(τ).

Rxx(τ) =

∫ ∞

−∞
x(t)x(τ + t)dt. (3)

Now, what if we Fourier transform R?

Sxx(σ) =

∫ ∞

−∞
Rxx(τ)e−iστ dτ. (4)

Now let’s think about starting with two functions, f(t) and g(t). We can write their Fourier
transforms:

F (σ) =

∫ ∞

−∞
f(t)e−iσt dt (5)

G(σ) =

∫ ∞

−∞
g(t)e−iσt dt. (6)

So now let’s define F times the complex conjugate of G. (Why do we consider the complex
conjugate? Because it’s how we always multiply vectors.) So

F (σ)G∗(σ) =

∫ ∞

−∞
k(t)e−iσt dt. (7)

For the moment, we have no idea what k(t) should be, but we should be able to figure it out. If
F (σ)G∗(σ) is a product in the frequency domain, then k(t) should be a convolution in the time
domain:

k(t) =

∫ ∞

−∞
f(u)g(u− t) du. (8)

UCSD—SIOC 221A: (Gille) 3

We can plug k(t) into our equation to check this.∫ ∞

−∞
k(t)e−σt dt =

∫ ∞

−∞

{∫ ∞

−∞
f(u)g(u− t) du

}
e−iσt dt (9)

=

∫ ∞

−∞

∫ ∞

−∞
f(u)g(u− t)eiσ(u−t)e−iσu dt du (10)

=

∫ ∞

−∞
f(u)e−iσu

{∫ ∞

−∞
g(u− t)eiσ(u−t) dt

}
du (11)

=

∫ ∞

−∞
f(u)e−iσuG∗(σ) du (12)

= G∗(σ)

∫ ∞

−∞
f(u)e−iσu du (13)

= G∗(σ)F (σ). (14)

So we can think about what happens when g(t) = f(t), so that

k(t) =

∫ ∞

−∞
f(u)f(u− t) du. (15)

This means that k(t) is the autocovariance of f . and

|F (σ)|2 =

∫ ∞

−∞
k(t)e−iσt dt. (16)

This says that the Fourier transform coefficients squared (what we use when we compute spectra)
ar equivalent to the Fourier transform of the autocovariance.

Now we can rewrite this in terms of the discrete Fourier transform. In this case, the mean of
our data is:

〈x〉 =
1

2T

∫ T

−T

x(t)ei0 dt = a0. (17)

and the variance is

〈x ∗ x〉 =
1

2T

∫ T

−T

x∗(t)x(t) dt− |a0|2. (18)

We use the complex conjugate here, just in case x(t) is represented as a complex number, since
this will give us the sum of the squares. Notice that we’ve remembered to subtract out the mean
(our frequency zero Fourier coefficient).

In similar notation, we can write the covariance (for finite record length 2T) as:

R(τ) =
1

2T

∫ T

−T

x∗(t)x(t + τ) dt− |a0|2. (19)

This let’s us write out an expression for the variance R in terms of the discrete Fourier coefficients:

R(τ) =
1

2T

∫ T

−T

[∑
n

a∗ne
−iσnt

∑
m

ameiσm(t+τ)

]
dt (20)

=
∑

n

∑
m

a∗name−iσmτ 1

2T

∫ T

−T

ei(−σn+σm)t dt (21)

=
∑
m

|am|2e−iσmt − |a0|2 (22)

UCSD—SIOC 221A: (Gille) 4

where we used a Kronecker delta (δnm) to eliminate the integral with ei(−σn+σm)t except when
n = m, and we subtracted a2

0 at the end to match our original definition. This tells us that the
Fourier transform of the autocovariance can be expressed by the squared Fourier coefficients. (So
we could avoid the Fourier transform completely and just work with the auto-covariance.)

In this form, Parseval’s theorem simply says that

R(0) =
1

2T

∫ T

−T

x∗(t)x(t0) dt− |a0|2 (23)

=
∑
m

|am|2 − |a0|2 (24)

meaning that the variance of x is the sum of magnitudes of the Fourier coefficients.
Using the auto-covariance to compute spectra requires averaging, just as we did by segment-

ing our data and using the fft, but there’s one tidy little trick. Let’s use some white noise again, and
take a look at our options:

1. Suppose we start with a big matrix of white noise, and we compute the autocovariance for
each column of our matrix, then Fourier transform, and use these to compute a spectrum.
We’ll end up doing something along these lines:

A=randn(1000,100);
for i=1:100
AcA(:,i)=xcov(A(:,i),A(:,i),’unbiased’); % autocovariance for
end
fAcA=fft(AcA(500:1500,:)); % Fourier transform of autocovariance
frequency=(0:500)/1000;
loglog(frequency,abs(mean(fAcA(1:501,:),2)),’LineWidth’,3)
set(gca,’FontSize’,16)
xlabel(’Frequency (cycles per data point)’,’FontSize’,16)
ylabel(’Spectral energy’,’FontSize’,16)

2. Alternatively, we could average all of the autocovariances, and then Fourier transform:

mean_AcA=mean(AcA,2);
fmean_AcA=fft(mean_AcA(500:1500));
hold on
loglog(frequency,abs(fmean_AcA(1:501,:))*1.1,’r’,’LineWidth’,3)
legend(’average of FFTs of many autocovariances’,...

’FFT of averaged autocovariance (scaled by 1.1)’)

In the results, shown in Figure 1, the curves are identical, though the red line has been scaled up by
10% to make both visible. There are some normalizations here that we haven’t properly confronted
(notably a missing factor of 2 and a factor of N or ∆t to properly normalize our fft.) Details can
be sorted out later, and Thomson and Emery provide a bit of guidance on this.

Notice that we use the “unbiased” estimator. That’s up for debate, and there’s also an ar-
gument to use the “biased” estimator. The difference depends on how we normalize our discrete
autocovariance. In the unbiased case, we’re computing

R(τ)unbiased =
1

N −m

N−m∑
n=1

x(tn)x(tn+m). (25)

UCSD—SIOC 221A: (Gille) 5

In the biased case, we change how we normalize:

R(τ)biased =
1

N

N∑
n=1

x(tn)x(tn+m), (26)

which means that as the number of values we consider becomes smaller, we constrain the magni-
tude of the autocovariance by continuing to divide by N . Emery and Thomson note that the biased
estimator acts like a triangle window.

You shouldn’t be surprised that averaging before or after the FFT leads to the same results,
since averaging has no impact on the FFT. But this might give you an idea of how you can take
advantage of the autocovariance to compute spectra from gappy data.

All of this means that we could compute spectra without needing to chunk our data and com-
pute lots of ffts, provided that we had a good estimate of the autocovariance. In the days before the
development of the FFT, the autocovariance was a natural pathway to determining the spectrum,
since it was clean and easy to compute. And now, with modern computing, you might not feel like
there’s any need to take advantage of the FFT anymore. If you can obtain the best possible estimate
of the autocovariance, by whatever means necessary, then you should be able to compute one FFT
and obtain reasonable estimate of the spectrum, without concern for data gaps or computational
speed.

UCSD—SIOC 221A: (Gille) 6

Figure 1: Spectra for white noise, computed by Fourier transforming 100 realizations of the autoco-
variance function (blue), or by Fourier transforming a smoothed autocovariance function computed
from 100 realizations of the data (red). The red line is scaled upward by a factor of 1.1.

