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Lecture 14:

Recap
While I was gone, you looked at aliasing and frequency-wavenumber spectra. There are lots

of details, but the key concepts are important. Aliasing:

1. Variability beyond the Nyquist frequency will alias intoyour resolved frequencies. That
means that if you find blue spectra, or if there’s a spectral peak above the Nyquist frequency,
it will show itself within your resolved frequencies. Thus rule #1 is if your spectra are white
or blue near the high-wavenumber limit, you should be very skeptical of your computed
high-wavenumber spectra, on the assumption that the spectral slopes are corrupted (at least
a bit) by aliased, unresolved variability.

2. Aliasing can also be used strategically, for example if you want to detect tidal variability
from a satellite that samples infrequently compared with the tidal period.

Frequency-wavenumber spectra:

1. If you can Fourier transform in time or space, then you can definitely do both together.

2. While we usually look at only positive frequencies or positive wavenumbers when we plot
spectra, in the frequency-wavenumber two-dimensional plane, it usually makes sense to al-
low for positive and negative propagation, so we look at positive and negative wavenumbers
with positive frequencies, or vice versa.

3. When we plot frequency-wavenumber spectra, we want to center around zero, so we have to
shift the information from our fft around. The function “fftshift” will do this in Matlab, or
you can do it manually.

Next up, what happens when we want to look at the relationshipbetween two signals?

Extracting phase information from the Fourier coefficients
Before we get into frequency-wavenumber digression, let’s make a quick detour to look at the

phase information that we’ve been ignoring for most of the quarter. After all this effort to square
Fourier coefficients, you might wonder what the real and imaginary parts are really good for. They
are useful for sorting out the phasing of your sinusoidal oscillations. When is the amplitude at a
maximum? To do this you can keep in mind that

A cos(σt + φ) = a cos(σt) + b sin(σt). (1)

This can be rewritten:

cos(σt) cos(φ) − sin(σt) sin(φ) =
a

A
cos(σt) +

b

A
sin(σt), (2)

which means that

a

A
= cos(φ) (3)

b

A
= − sin(φ) (4)
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so

φ = atan

(

−
b

a

)

. (5)

Actually there’s more information in the Fourier coefficients than this conveys, since you know
the signs of botha andb, and not just their relative magnitudes. The arctangent function doesn’t
distinguish +45◦from -135◦, but we can. In some numerical implementations, you can address this
using a function called atan2.

phi = atan2(-b,a);

Covariance
Early in the quarter we discussed the variance, and we left for later the concept of correlation

or covariance. If we want to compare two time series, we can compute the variance of one record
relative to the other. Formally we can write:

covx, y = 〈x(t)y(t)〉. (6)

or in discrete terms

covx, y =
1

N

N
∑

i=1

xiyi. (7)

For comparison purposes, we often normalize this to producea correlation coefficient, which is
normalized by the variance:

r =
1
N

∑N
i=1 xiyi

√

1
N

∑N
i=1 x2

i
1
N

y2
i

. (8)

(You might wonder how to judge whether a correlation coefficient is statistically significant. Cor-
relation coefficients should have a Gaussian distribution,which means that cumulative distribution
function will be an error function. We can use this to determine the correlation coefficient that we
might expect from an equivalent number of random white noisevariables:

δr = erf−1(p)

√

2

N
(9)

wherep is the significance level we want to consider, typically 0.95, andN is the effective number
of degrees of freedom.)

Coherence
Coherence provides information that is analagous to a correlation coefficient for Fourier trans-

forms. It tells us whether two series are statistically linked at any specific frequency. This can be
important if we think that the records are noisy or otherwiseuncorrelated at some frequencies, but
that they also contain statistically correlated signals.

To compute coherence, first we need a cross-spectrum. (We looked at this in passing when we
considered Parseval’s theorem, but at that stage, I quicklyset my different variables equal to each
other.) Consider two time seriesx(t) andy(t):

x(t) =
∞

∑

n=−∞

Xneiσnt (10)

y(t) =
∞

∑

n=−∞

Yne
iσnt (11)
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The the cross spectrum is computed in analogy with the spectrum:

ĈXY (σm) =
〈X∗

mYm〉

∆σ
(12)

The relationship between the cross-spectrum and the covariance is analogous to the relationship
between the spectrum and the variance. There are some important details to notice.

1. The cross spectrum is complex, while the spectrum was real.

2. The cross spectrum is computed as an average of multiple spectral segments.

3. In our discrete Fourier transform, we should be normalizing by N , as always, but we’re
mostly concerned with relative values.

The cross-spectrum is complex, and when we use it we distinguish between the real and
imaginary parts. The real part is called the “co-spectrum”:

c(ωk) = ℜ
N

∑

n=1

(XkY
∗

k ) (13)

and the imaginary part is called the “quadrature spectrum”

q(ωk) = ℑ

N
∑

n=1

(XkY
∗

k ). (14)

To determine the frequency-space relationship between twodata setsxn andyn, we first divide
them into segments and Fourier transform them, so that we have a set ofXk’s and a set ofYk’s.
When we computed spectra, we found the amplitude of eachXk and then summed over all our
segments. Now we’re going to do something slightly different. For each segment pair, we’ll
compute the product ofX times the complex conjugate ofY : XkY

∗

k . Then we’ll sum over all the
segments. In Matlab this becomes

sum(X.*conj(Y),2);

The corresponding amplitude is
√

c2(ωk) + q2(ωk). For comparison the spectra forX was:

fx(ωk) =
N

∑

n=1

XkX
∗

k , (15)

and it was always real.
The coherence resembles a correlation coefficient. It’s theamplitude squared divided by the

power spectral amplitudes for each of the two components:

C2(ωk) =
c2(ωk) + q2(ωk)

fx(ωk)fy(ωk)
(16)

It’s really important that your spectra are based on more than one segment, that is thatN exceeds
1. If that weren’t the case, you’d just have a single realization of each spectra, and the resulting
squared coherence would be

C2(ωk) =
X(ωk)Y

∗(ωk)X
∗(ωk)Y (ωk)

X(ωk)X∗(ωk)Y (ωk)Y ∗(ωk)
= 1, (17)
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Figure 1: Time series of vertical acceleration and x-axis accleration for free-floating accelerometer
near Scripps pier.

which is not a terribly informative result. When it’s done properly, coherence measures how well
different segments ofx andy show the same type of relationship at a given frequency.

The phaseφ(ωk) = tan−1(−q(ωk)/c(ωk)) tells us the timing difference between the two time
series. Ifφ = 0, changes inx andy happen at the same time. Ifφ = π, thenx is at a peak when
y is at a trough. And a value ofφ = π/2 or φ = −π/2 tells us that the records are a quarter cycle
different.

How much confidence do we have in our results? For the coherence, we require that the
squared coherence exceed:

β = 1 − α1/(nd−1) (18)

whereα is a measure of the significance level. Ifα = 0.05 that means that there is less than a
5% chance that random noise could have produced a coherence as high as the observed value. The
number of data segments used isnd.

The phase error can seem a little murky. Formally, the uncertainty in the phase is

δφ = sin−1

[

tα,2nd

√

1 − C2
xy

2ndC2
xy

]

(19)

wheretα,2nd
is the “Student t distribution”.

Example: Coherence and Wave Spectra
So let’s see whether surfboard acceleration measurements show any signs of coherence. We’ll

start by comparing vertical and horizontal accelerations of the free floating accelerometer, as shown
in Figure 1. These two records have rather different spectraas shown in Figure 2. The two records
are coherent, as shown in Figure 3 with a phase difference of roughlyπ radians, implying that they
are 180◦ out of phase, at least at the frequencies at which they are actually coherent. In contrast, the
vertical acceleration for the free floating accelerometer is not coherent with vertical acceleration
from the shortboard.
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Figure 2: Spectra for vertical andx acceleration of free-floating accelerometer near Scripps pier.
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Figure 3: (top) Coherence of vertical andx acceleration of free-floating accelerometer near Scripps
pier. (bottom) Phase difference between vertical andx acceleration components.
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Figure 4: (top) Coherence of vertical acceleration of free-floating accelerometer versus shortboard
accelerometer near Scripps pier. (bottom) Phase difference.


