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Lecture 16:
Reading: Bendat and Piersol, Ch. 9.1-9.2

Recap
We’ve looked at a couple examples of coherence calculations along with some (incomprehen-

sible) figures from published cases. The key feature of coherence is that it allows you to decide if
two records vary in a consistent way at any given frequency. This is a subtle point: if you view the
world from the perspective of a Fourier transform, everything is sinusoidal, and naturally all data
records vary sinusoidally, although the phasing of record x could differ from the phasing of record
y. When we compute coherence, we ask whether the phasing (at frequency σ or wavenumber k)
between x and y is consistent between different chunks of the data records. To compute coherence
we need to segment our data; for the same reasons that we detrend and window when we compute
spectra, we should detrend and window when we compute coherence.

Coherence calculations produce two results: a coherence that varies between 0 and 1, and a
phase that varies between −π and π (or equivalently from 0 to 360 degrees or -180 to 180 degrees.)

Frequency-wavenumber details First a digression to think about how to compute frequency-
wavenumber spectra. On the surface this seems easy:

1. Break data into segments in time or space, probably time.

2. Demean, detrend, window as appropriate.

3. Fourier transform in time.

4. Fourier transform in space.

5. Average amplitudes for all realizations.

6. Use fftshift to put frequency and wavenumber zero at the center of your data matrix.

7. Plot with log of values. Show half the data plane to cover positive and negative propagation
possibilities.

The devil is in the details. Do you detrend in time only, or in time and space? Do you window at
all, in time, in space, both at once?
Uncertainties of coherence and phase: What do we believe?

Bendat and Piersol provide a good discussion of bias and uncertaintites in spectral estimators.
As a starting point, the variance of the quantity that we want to estimate is

var[Ã] = E[Ã2]− A2, (1)

where A is the true value, and Ã is the unbiased estimate (so E[Ã] = A. For spectral estimators
we tend to talk about the normalized error:

ε2 =
varÃ
A2

. (2)

Bendat and Piersol first derive relationships for the variance of the spectrum and cross-
spectrum in the case of one segment and two degrees of freedom (see appendix). They then note
that variance scales with 1/n, where n is the number of degrees of freedom, so that variance can
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be inferred for spectra and cross-spectra with any number of degrees of freedom (by dividing by
nd the number of segments).

We compute a significance level for coherence several ways. The standard approach that we
discussed previously is to set a threshold for evaluating whether a calculated coherence exceeds
what we might expect from random white noise. We started with the uncertainty for the squared
coherence:

β = 1− α1/(nd−1), (3)

where nd is the number of degrees of freedom and C is the coherence (see Thomson and Emery).
An alternate formulation is presented by Bendat and Piersol, who report the standard deviation of
the coherence to be:

δγ2
xy

=

√
2(1− γ2

xy)γxy√
nd

. (4)

These are different metrics. One tells us whether the derived coherence is statistically different
from zero; the second evaluates the range of values that would be consistent with an observed
coherence.

Uncertainty for phase is often reported with the formula I provided in class

δφ = sin−1

[
tα,2nd

√
1− C2

xy

2ndC2
xy

]
(5)

where tα,2nd
is the “Student t distribution”. But when we plot this up, it doesn’t look entirely

plausible. Bendat and Piersol provide a different formulation:

std [φxy(f)] ≈

√[
1− γ2

xy(f)

γ2
xy(f)2nd

]
. (6)

and Zwiers and Von Storch quote Hannan and provide:

δφ = sin−1

[
t(1+α)/2,2nd−2

C−2
xy − 1

2nd − 2

]
(7)

In Matlab, these become:

% cab is covariance between a and b
alpha = .05;
delta_phase = asin(tinv(0.975,2*nd)*...

sqrt((1-abs(cab).ˆ2)./(abs(cab).ˆ2*sqrt(2*nd))));
delta_phase2 = sqrt((1-cab.ˆ2)./(abs(cab)ˆ2*2*nd));
delta_phase3 = asin(tinv(0.975,2*nd-2)...

*(1 ./cab.ˆ2-1)/(2*nd-2));

The expressions are similar, though not identical. Which is most appropriate? We can test this out
by creating a fake data set with a known phase relationship:

a=randn(100,1000)+ cos(2*pi/10*(1:100)’)*ones(1,1000);
b=randn(100,1000) + sin(2*pi/10*(1:100)’)*ones(1,1000);
fa=fft(a);
fb=fft(b);
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fab=conj(fa).*fb;
faa=conj(fa).*fa;
fbb=conj(fb).*fb;

cab=abs(mean(fab,2)) ./sqrt(abs(mean(faa,2)) .* abs(mean(fbb,2)));

m=10;
clear phase_c
for i=1:1000/m
phase_c(:,i)=atan2(-imag(mean(fab(:,(i-1)*m+1:i*m),2)),...

real(mean(fab(:,(i-1)*m+1:i*m),2)));
end

nd=m;
delta_phase = asin(tinv(.95,2*nd)*...

sqrt((1-abs(cab).ˆ2)./(abs(cab).ˆ2*sqrt(2*nd))));
delta_phase2 = sqrt((1-cab.ˆ2)./(abs(cab).ˆ2*2*nd));
delta_phase3 = asin(tinv(.975,2*nd-2)*(1 ./cab.ˆ2-1)/(2*nd-2));
% compare results
[delta_phase(11) delta_phase2(11) delta_phase3(11)]
std(phase_c(11,:))

It’s clear from these tests that (a) the distribution of the phases should be roughly Gaussian, (b)
Bendat and Piersol’s representation for the standard deviation of the phase (delta phase2) is rel-
atively reliable, (c) the inverse sine formulations should produce phase errors representing the
95th percentile, and they are not consistent with that, suggesting that some detail has been lost in
translation.

Appendix: More detail on variance of cross-spectra
If we have two degrees of freedom, the cross spectrum is

|ĈXY (σ)|2 = Ĉ∗
XY ĈXY (8)

= |X∗(σ)Y (σ)|2 (9)
= X(σ)Y ∗(σ)X∗(σ)Y (σ) (10)

So trying all combinations to get the sum of the 4-term product:

〈|ĈXY (σ)|2〉 = 〈< XX∗〉〈< Y Y ∗〉+ 〈< XY ∗〉〈< X∗Y 〉+ 〈< XY 〉〈< X∗Y ∗〉 (11)
= CXXCY Y + |CXY |2 (12)

where C here is the total cross-spectrum. The variance is then

var[ĈXY ] = 〈|ĈXY (σ)|2〉 − |ĈXY (σ)|2 (13)
= CXXCY Y (14)

=
|CXY |2

γ2
xy

(15)

where γxy is the coherence.
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With more degrees of freedom, error scales with the square root of the number of samples,
just like the standard error:

varCXX =
C2

xx

nd

(16)

varCY Y =
C2

Y Y

nd

(17)

varCXY =
|CXY |2

γ2
xynd

(18)

This scaling gives us the uncertainty for the coherence and phase after some manipulation. (See
Bendat and Piersol, Ch. 9 for details.)

This means that the normalized uncertainty of CXY is

ε[|ĈXY |] =
std[CXY ]

CXY

=
1

|γxy|
√

nd

(19)


