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Lecture 18:

Recap
Last time we worked through a coherence example in detail and looked at links between
coherence and co-variance. Now we just have a few more details to wrap up.

Multi-tapers and spectral peaks

Spectra can come in two flavors. Some have distinct single peaks, associated with tides. Some
have large-scale structure associated with the general red structure of the ocean. If we want to find
exactly the right peaks, then we can try different strategies to what we use when we want to find
the general structure.

When we have narrow peaks, they aren’t always easy to differentiate, particularly if our sam-
pling is a bit coarse compared with the signals we’d like to detect. Consider the following case of
a sinusoidal cycle that might or might not be well sampled, depending how long our instruments
survive:

time=1:.5:120;

A=2+cos (2+*pi*time/30)+cos (2+«pirtime/60) ;
B=A(1:200);

C=[A(1:200) =zeros(1,40)];

plot (time,A,time (1:200),B,’' LineWidth’, 3)
set (gca, 'FontSize’,16)

xlabel ("time’,"FontSize’,16)

ylabel ("amplitude’,’'FontSize’, 16)

fA=fft (A);
tB=fft (B);
fC=£ft (C);

frequencyl=(0:120)/120;
frequency2=(0:100) /100;

loglog (frequencyl,abs (fA(1:121)) .2, frequency2,abs (fB(1:101)).72, ...

frequencyl,abs (fC(1:121))."2,’ LineWidth’, 3)
set (gca,’'FontSize’,16)
xlabel (' frequency’,’'FontSize’,16)
ylabel (' spectral density’,’FontSize’,16)
legend (' full record’,’truncated record’,’zero padding’)

When you look at this example, you might conclude that without perfect sampling of full sinusoidal
cycles, we’ll never find the correct spectral peaks. In essence this is a windowing problem.
If we don’t have adequate resolution what are our options?

1. Possibility 1. Pad the short record with zeros to make it as long as we want. Since resolution
is f = 1/(NAt). In this case, we’ll see the impact of a sinc function bleeding into the
frequencies that we’d like to resolve. Clearly this doesn’t fully solve our problem.
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2. Possibility 2. Obtain a longer record. This will be critical if we really want to resolve our
signal.

Even if our record is norminally long enough, we also need to figure out how to optimize our
detection of spectral peaks. Earlier this quarter we looked at the impact of windows, and examples
from the Harris (1978) study showed how much impact a good windowing strategy can have in
identifying spectral peaks. (For continuous spectra, windowing approaches work well.)

Formally, you’ll recall that we can represent our record length problems using a convolution
of our data with a finite width filter:

X (o) = /Oo X (@)W (0 — w) dw, ()
where _
Wi(o) = sin(oT) = sinc (£> ()
ol s

This means that the spectrum is essentially convolved with W (c)?. But as we noted earlier, we
can switch from a boxcar window to a triangle window or something a bit more Gaussian than that
and cut down on the sidelobes in our window to obtain a cleaner spectrum, although we have to
widen the central peak of the window in the frequency domain, which means de-emphaizing the
beginning and end of the data series.

What if we want to improve our resolution. Consider Rob Pinkel’s example of a record
equivalent to

x = 100 cos(2720.5/10001)+80 cos(2730.4/100001)4-100 cos(2740.8/100001)+10 cos(2750.3/100001)
3)

The quality of our spectral estimate will depend on the length of our record. (Why is that? The

resolution is the lowest resolved frequency.) So what can we do to improve resolution. One strategy

would be to pad our record with zeros to make it as long we want. That buys us something, but it

gives us plenty of spectral ringing.

If we really want to optimize resolution, we can try a multitaper approach. (See for example
Ghil et al, Reviews of Geophysics, 2001). In a multitaper approach, we replace our single window
with a set of tapers. The tapers are designed to minimize spectral leakage, and they are referred to
as “discrete prolate spheroidal sequences” or “Slepian” tapers (after Slepian, who studied them).
Tapers are used like windows—they pre-multiply the data, Fourier transforms are coputed, and
then the spectrum is computed as a weighted sum of all of the squared Fourier transforms. This
effectively averages over an ensemble of windows to minimize variance. This is very effective for
extracting narrow peaks that would otherwise be undetectable. Matlab has a multi-taper method
package (‘pmtm’), but if you really want this to work, you probably want to dig into the guts of
the algorithm a bit further. Here’s the Matlab example, modified slightly to make a longer record:

fs = 1000; % Sampling frequency
t = (0:3xfs)/fs; % One second worth of samples
A= [1 271; % Sinusoid amplitudes

f

[150;140];

o\

Sinusoid frequencies

Xn = Axsin(2xpixfxt) + 0.lxrandn(size(t));
pmtm(xn, 4, []1, £s)
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This produces an impressive two spectral peaks. Of course this example isn’t too tricky. Here’s
what we get if we take the same data and split them into 6 non-overlapping segments, even with
no windowing or detrending:

fa=fft (reshape(xn(1:3000),500,6));
semilogy (mean (abs (fa(1:250,:)7).72))

These are reassuringly similar results.

At this point, we should sort out in our heads the definition of a decibel.

Decibels (“db”, not to be confused with decibars) quantify power or variance. We often focus
on orders of magnitude. But power in decibels is on a logy, scale, with a factor of ten normalization.

Py = 10log,,(P/ F), 4)
where F, is a reference level of power: Variance is a squared quantity so

P/Py P relative to P, (db)

1000 30
10 10

2 3
0.5 -3
0.1 -10

de = 2010g10<V/‘/0) (5)

By convention dB is used for sound pressure and db for everything else.
Transfer function: If we want to look at relative sizes, we can look at the transfer function:

~

Hoy(f) = Gay(f)Gaa(f), (6)

which provides a (complex-numbered) recipe for mapping from x to y.
Formally, we talk about the transfer function when we think about constructing a linear sys-
tem:

L(y(t)) = =() )
If £ is a linear operator, then we could think of this relationship as a convolution:
Y = / h(uw)x(t —u) du (8)

or if we Fourier transform, this would state:
Y(o)=H(o)X(0). 9)

Consider it this way. Suppose

2y d
(t) = EZ‘; + ad—‘z + By (10)

Then by Fourier transforming, we have:

X(o) = —0*Y (o) +iacY (o) + BY (o) (11)
= Y(o)[8— 0" +iao] (12)
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N
1

(o) = B — 0%+ iao]

X (o) (13)
and
1
8 — 0% +iao]
This is a nice framework for solving differential equations, but can we use it to gain insights
into our data as well? First some rules:

H(o) = (14)

1. Linearity: If a given linear system has an input z(¢) which corresponds to an output y; (¢),
and input x5 () corresponds to output yo(#)m then a summed input z(t) = axy(t) + Sra(t),
will produce an output y(t) = ayi(t) + Bya(t).

2. Time invariance: If an input is delayed in time by 7, then the output is as well: If z(t)rightarrowz(t+
7), then y(t) — y(t + 7).

3. Causality: If h(t) represents an impulse, then it should be zero for ¢ < (0. A response cannot
occur before the forcing.

4. Sequential application: If the output of one linear system is an input to a second system, then
the frequency response is
ng(O'):Hl(O')'HQ(O') (15)

So suppose we measure y(t) and z(t). Can we determine h or H? We know that
Y(0) = H(o)X(0) (16)

Let’s multiply both sides of the equation by the complex conjugate of X to form the cross-
spectrum:

Y(o)X*(o) _ X(o)X*(0)
Ao = Hlo) Ao (7
This becomes
Coy(0) = H(0)S(0) (18)

H(o) = Cyy(0)/Sax(0) 19)



