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Lecture 2: Probing the power of probability density functions
Reading: Bendat and Piersol, Ch. 3.1-3.3

Announcements: auditors, please make sure that | have y@@&DJe-mail so that | can get
you access to TritonEd.

Recap

Last time we talked about some basic statistical measufege have a collection of data
(random variablel we can compute theimean variance standard deviationmedian and we
can examine th@robability density functiorof the data. We also made a distinction between
the expectation valuéthe value we’d expect if we had an infinite number of perfesampled
observations) and the observed mean. Similarly, we camgissh between an empirical proba-
bility density function (what we actually observe) and ttiea probability density function that we
observe.

An example
Melissa Carter, the Shore Stations Program manager, is melod the pier data. After 100
years of data collection, she has a specific question for you:

| think an excellent project for your class to take on is thenparison between the
automated and the manual time series since they both hdeeedif “issues”, biofoul-
ing versus under-sampling. Questions they can answer arat k¢ information is
gained with the continuous 4min time series, and is thereed t@continue to collect
the manual once per day measurements? This is major quegianll be asking at
the 100 year symposium for the manual program...is 100 ysrasgh?

We could start to answer these questions by using the toolewviewed in the first lecture.
Are the means the same? Are the variances the same? But thgiveviis an incomplete picture
for several reasons:

1. As we noted last time, data sets can perversely have the sean and standard deviation,
but have pdfs that look nothing alike.

2. When we deal with real data, nothing is ever identical, stl weed to know how big a
difference is acceptable.

The pdf is going to help us work through these issues. What @adowvith a pdf? Let’s
cover three topics:

1. How do we define a pdf?
2. How do we use the pdf to think about confidence limits? Are éstimates different?
3. How can we tell if two pdfs are different?

So let’s start by making an empirical pdf. Last time we tallabdut temperature on the pier,
so now, let’s take a look at pressure. We could plot a histogyBthe data using the hist function,
but that wouldn’t give us a pdf. For the pdf we need to be prgpermalized. We can still do this
using hist:
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% read the data
time=ncread('scripps_pier-2016.nc’,’time’);
pressure=ncread(’scripps_pier-2016.nc’,’pressure’);
%

% compute the histogram

dx=.1;

[a,b]=hist(pressure,2:dx:5);
plot(b,a/sum(a)/dx)

%

% or using a different dx

dx=0.01

hold on

[c,d]=hist(pressure,2:dx:5);
plot(d,c/sum(c)/dx,’r’)

xlabel('pressure (dbar)’,’FontSize’,14)
ylabel('probability density’,’FontSize’,14)

My predecessor, Rob Pinkel, always told students that theldod use the “hist” function
for this and should do a loop. How do we do that?

% or using a loop

dx=0.1; clear n_bin;

bins=2:dx:5;

for i=1:length(bins)

n_bin(i)=length(find(pressure>bins(i)-dx/2 & pressure<=bins(i)+dx/2));
end

plot(bins,n_bin/sum(n_bin)/dx,’g’)

We like to think that geophysical variables are normallytrtbhsited, meaning that the distri-

bution is: X )
p(z) = —— exp (— Cnt), ) W

 o2r 202

wherey is the mean and is the standard deviation. So we can add a Gaussian to our plot

sigma=std(pressure); mu=mean(pressure)
plot(bins,1/sigma/sqrt(2 *pi) *exp(-(bins-mu).”2 /(2 *sigma’2)),...
'k’,’LineWidth’,2)

See Figure 1 for the results.

We like the Gaussian, because it's easy to calculate, arasiell defined properties. We
know that 68% of measurements will be withiro of the mean, and 95% of measurements will
be within+2¢ of the mean.

We can turn this around to decide whether a measurement istherolf we expect to see a
lot of values near the mean, and we find that we have a measutrd&mae deviates from the mean
by 50, then it's not terribly statistically likely. (For a Gauasi, 99.99994% of observations should
be within +50 of the mean.) Thus we might decide to throw out all outlieet tffer from the
mean by more than 3 or 4 o5

We can also use this framework to think about uncertaintywdimeasure one realization of
an estimate of the mean, that will become our best estimdteeahean. If our formal estimate of
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our a priori uncertainty is correct (and we might also cab th but let's usej for now), then we
expect that 68% of the time, our single observation shoulditien +4 of the true value, and 95%
of the time, our single observation should be wihtigad of the true value.

And really, we like the Gaussian, because the convoluti@@hussian with another Gaussian
is still a Gaussian, so we can manipulate the statisticdyeddut are data necessarily normally
distributed?

So this might lead you to think that all data are fairly Gaassi

Example pdfs of real data? Non-Gaussian cases.
Now what if we plot chlorophyll?

hold off

chl=ncread(’scripps_pier-2016.nc’,’chlorophyll’);

flag=ncread(’scripps_pier-2016.nc’,’chlorophyll_flagPrimary’);

xx=find(flag==1);

[a,b]=hist(chl(xx),.5:49.5);

plot(b,a/sum(a), LineWidth’,2)

hold on

ylabel(’probability density’,’FontSize’,14)

xlabel(’chlorophyll (\mu g/L)’,’FontSize’,14)

%

mu=mean(chl(xx));

sigma=std(chl(xx));

bins=.5:49.5;

plot(bins,1/sigma/sqrt(2 *pi) *exp(-(bins-mu).”2 /(2 * sigma’2)),...
'k’,’LineWidth’,2)

As illustrated in Figure 2, chlorophyll concentrations dexidedly non-Gaussian. (We usually
refer to chlorophyll as being log-normally distributed,anéng that the log of the values might be

Gaussian.)
Ocean velocity data often have a double-exponential Higicn, as do wind velocity data:
1 2| V2
= — - . 2
plo) = Lo |- @

Sometimes we only measure wind speed, and that's necggsasitive. The Rayleigh distri-
bution is sometimes a good representation of wind speesidifined from the square root sum of

two independent Gaussian components squared,/z? + z3.
2
) Y
o) = o |- 2. ©

Summing variables, error propagation, and the central fitheorem
Given that so many pdfs can be non-Gaussian, why do we spemddotime talking about
Gaussians? There are two important reasons.

1. As noted above, the Gaussian is mathematically tractable

2. Even though individual pdfs are non-Gaussian, if we suough variables, everything is
Gaussian. (This is the central limit theorem, which we’ll enext time.)
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Often the quantities we study represent a summation of pieltandom variables. For example,
we’re not interested in the instantaneous temperaturenleudverage over an hour or a day. Thus
we consider

z(k) = Naz;(k), (4)
=1
following the terminology of Bendat and Piersol, wherés a coefficient. The mean afis
[y = ;Naixi(k) = ;Nai,ui. (5)
and )
o = B [(a(k) — )] = B [z N - ) = 3 Vot ©)

In doing this, we've carried out a little sleight of hand, bgsaming that for a large ensemble
(as the number of elements used to define our expectatioa ¥approachesc) the correlation
betweenr; andz; is zero so that the expectation valb@x; (k) — 11;)(z; (k) — p;)] = 0 fori # j.

Error PropagationOur consideration of the summed variables gives us a ruledtimating un-
certainties of computed quantities. If we sum a variety oaisuges together, then the overall
uncertainty will be determined by the square root of the stith@squares:

0y = /Z Na2é?, (7
i=1

where here we’re using to represent the a priori uncertainties.

What if we have to multiply quantities together? Then we syrplearize about the value
of interest. So ify = 22, and we have an estimate of the uncertainty,id,, then we know that
locally, nearz,, we can expand in a Taylor series:

y(wo + Ax) = y(x,) + dy/deAz. (8)
This means that | can use my rules for addition to estimatericertainty iny:

dy(z,)

dy(x,) = ’ o 0y = 22,0, (9)

and you can extend from here.yf= a;z + ay2® + asz®, what isé,? When will this estiamte of
uncertainty break down?
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Figure 1: Probability density function for 2016 pressuresasured from the shore station at the
Scripps pier. Here the green line indicates the pdf compusetg bins with a width of 0.1 dbars,
and the red line indicates the pdf for bins with a width of Odbhrs. The black line is a Gaussian
defined by the mean and standard deviation of the measurement
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Figure 2: Probability density function for 2016 chlorophyleasured from the shore station at the
Scripps pier. Here the blue line indicates the empirica) pdé the black line is a Gaussian defined
by the mean and standard deviation of the measurements.



