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Lecture 3:
Reading: Bendat and Piersol, Ch. 3.1-3.3

Announcements: discussion 9:30 Wednesdays

Recap
Last time we talked about some probability density functions, the fact that we often assume

Gaussianity, and that often geophysical variables aren’t really Gaussian. We also noted that if we
know the mean and standard deviation for a set of variables, then we determine the mean and
standard deviation for a summed variable. Now let’s put someof these concepts to work for us.

Error propagation, and the central limit theorem
We left off with a discussion of the standard deviation of summed variables: Ifx(k) =

∑

i=1 Naixi(k), then the mean ofx is
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This gives us some simple rules of thumb:
Standard error of the mean.Suppose thatai is an averaging operator and is equal to1/N , and

σi is the same for alli. Then
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This means that the standard deviation of the mean,the standard error of the mean, is σ/
√

N .

As a footnote to this, thestandard error of the varianceis σ2
√

2/(N − 1).
Error PropagationIf we sum a variety of measures together, then the overall uncertainty will be
determined by the square root of the sum of the squares:

δy =
√

∑

i=1

Na2
i δ

2
i , (4)

where here we’re usingδi to represent the a priori uncertainties.
What if we have to multiply quantities together? Then we simply linearize about the value

of interest. So ify = x2, and we have an estimate of the uncertainty inx, δx, then we know that
locally, nearxo, we can expand in a Taylor series:

y(xo + ∆x) = y(xo) + dy/dx∆x. (5)

This means that I can use my rules for addition to estimate theuncertainty iny:

δy(xo) =

∣
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δx = 2xoδx (6)

and you can extend from here. Ify = a1x + a2x
2 + a3x

3, what isδy? When will this estiamte of
uncertainty break down?
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The central limit theorem
One of the reasons we like Gaussian distributions is becauseof the central limit theorem. This

says that when we sum variables together, the sum will tend totoward being Gaussian, even if the
individual variables are not. And this is plausible, since lots of variables we study are derived
quantities and therefore (sort of) Gaussian. Bendat and Piersol discussed summed variables under
the heading “central limit theorem”, but their discussion doesn’t provide a clear demonstration of
the central limit theorem, and I’m going to leave the formal derivation for 221B.

So let’s test this empirically: If we start with data drawn from a uniform distribution, and sum
together multiple values, how quickly do our results converge to Gaussian?

b=rand(100000,100)-.5; % define a matrix with 100 sets of random values,
% each with 100000 elements

cb=cumsum(b,2); % compute the summation of multiple random variables
% now compute the pdf
clear m1 m2
for i=1:100
[m1(i,:),m2(i,:)]=hist(cb(:,i),-12:.1:12);
end
%
% plot the first five values
plot(m2(1,:),m1(1:5,:)/100000/.1,’LineWidth’,2)
axis([-5 5 0 1])
ylabel(’probability density’,’FontSize’,14)
xlabel(’random variable’,’FontSize’,14)
legend(’N=1’,’N=2’,’N=3’,’N=4’,’N=5’)

The results of this calculation (shown in Figure 1 provide visual evidence for fairly rapid conver-
gence for the uniform distribution.

Non-Gaussian distributions
As we noted before, unsummed geophysical variables are often non-Gaussian. We’ve talked

about uniform distributions and double exponentials. Hereare some particularly important special
cases.

Sometimes we only measure wind speed, and that’s necessarily positive. The Rayleigh distri-
bution is sometimes a good representation of wind speed: it is defined from the square root sum of

two independent Gaussian components squared,y =
√

x2
1 + x2

2.

p(y) =
y

σ2
exp
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2σ2
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. (7)

And that brings us to theχ2 distribution. Suppose we define a variable:

χ2
n = z2

1 + z2
2 + z2

3 + ... + z2
n. (8)

Thenchi2n is a random chi-square variable withn degrees of freedom (andn is simply the number
of independent elements that we sum.) Then we can define a functional form for this:

p(χ2
n) =

1

2n/2Γ(n/2)
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(

−χ2

2

)

(chi2)(n/2)−1, (9)
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whereΓ(n/2) is the gamma function (and this is a function that you normally access through a
look-up table or a function programmed into Matlab, for example). Lots of variables end up look-
ing like chi2, so we’ll use this a lot to assess uncertainties, and for thiswe’ll need the cumulative
distribution function.

Cumulative distribution functions
Thecumulative distribution functionC(x) is the probability of observing a value less thanx.

It can be computed by integrating the pdf.

C(x) =
∫ x

−∞

p(x′)dx′. (10)

C(x) is 0 whenx approaches minus infinity, indicating that there’s a negligibly small chance of
having an infinitely small value ofx, and it is 1 whenx goes to plus infinity, which says that there
is a 100% chance of observing some value. The midpoint, whereC(x) = 0.5 is the median.

For a Gaussian, the cdf is defined to be an error function. For achi-squared function, it’s
defined as

C(x) =
1

Γ(n/2)
γ(n/2, x/2), (11)

whereγ is the lower incomplete Gamma function (and like the Gamma function Γ(n/2), it is
accessed through a look-up table. What is the cdf of a uniform distribution?

Are two pdfs different?
So now let’s return to the heart of our problem. How do we tell if two pdfs differ? We’ve

already noted that two data sets can look wildly different but still have the same mean and variance,
so clearly we need something more than just the mean and variance. We can go back to our
Gaussian overlaid on empirical pdf and eyeball the difference to say that they’re close enough, or
not plausibly similar. We can evaluate whether the mean and standard deviation differ. All of this
is good, but it doesn’t exploit the full range of informationin the pdf. We need a metric to measure
how different two distributions are.

Here are a couple of strategies. One notion is to ask about thelargest separation between
2 pdfs. We compute two cdfs—in this case one empirical and onetheoretical, but we can also
do this with two empirical cdfs. We find the maximum separation between the distributions, the
Komogorov-Smirnov statistic:

Dn = sup
n

|Cn(x) − C(x)| (12)

and then we can predict the probability that a data set withn elements should differ from the ideal
distribution byDn. Matlab has a “kstest” function (or “kstest2”) that sorts through the parameters
for this. However, we have to be careful with this, because usually our data are correlated, and we
don’t have as many degrees of freedom as we think. The easiestsolution is to decimate the data
set so that the number of elements reflects the number of degrees of freedom.

A second strategy is to bin the data and ask whether the numberof data in the bin is consistent
with what we’d expect, using achi2 statistics. In this case for comparisons with a theoreticalpdf,

χ2 =
∑

i

(Ni − ni)
2

ni

, (13)
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whereNi is the observed number of events in bini, andni is the theoretical or expected number of
events in bini. For comparisons between two distributions,

χ2 =
∑

i

(Ni − Mi)
2

Ni + Mi

, (14)

whereNi andMi are each observed numbers of events for bini. The values ofχ2 are evaluated
using theχ2 probability functionQ(χ2|ν), which is an incomplete gamma function, whereν is the
number of bins (or the number of bins minus one, depending on normalization). In Matlab this is

gammainc(chi_squared/2,nu/2)

Questions about pier data
Here are your questions:

1. What methods have been used to collect measurements on the pier, and how consistent are
they?

2. What variables are collected? What is the formal uncertainty? What is the sampling fre-
quency?

3. When did automated sampling start? When did automated sampling start being reliable?

4. What level of adjustment is applied to make manual and automated data match?

5. What has been published about these data?

6. How often are the sensors serviced?

7. What accounts for gaps in the data?

8. How hands on is the automated system?

9. What depths are the sensors?

10. Where are the sensors?

11. Are multiple sensors used are merged?

12. What is the local geographic variability?

13. What is the time of day of measurement? How clearly is that documented?

14. What does instrument failure look like in the data records?
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Figure 1: Probability density function for summed data drawn from a uniform distribution. If
N = 1, so only one data value is used, the distribution is uniform.If N = 2, is is a triangle
distribution. AsN increases, the distribution rapidly evolves to more closely resemble a normal
distribution.


