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Lecture3:
Reading: Bendat and Piersol, Ch. 3.1-3.3

Announcements: discussion 9:30 Wednesdays

Recap

Last time we talked about some probability density functjahe fact that we often assume
Gaussianity, and that often geophysical variables arealty Gaussian. We also noted that if we
know the mean and standard deviation for a set of variabhes) e determine the mean and
standard deviation for a summed variable. Now let’s put sohteese concepts to work for us.

Error propagation, and the central limit theorem
We left off with a discussion of the standard deviation of sued variables: Ifz(k) =
>i—1 Na;xz;(k), then the mean of is

[y = EN(%%‘(]{?) = ZNai,ui. (1)
and )
o = B [(a(k) — )] = B [z Na(w(k) — | = 3 NaZo? @

This gives us some simple rules of thumb:
Standard error of the mearsuppose that; is an averaging operator and is equal tdV, and
o, Is the same for all. Then
No? o2

0'325 = ;Nafaf = N; = Nl 3)

This means that the standard deviation of the misnstandard error of the mears a/\/N.

As a footnote to this, thetandard error of the variancis o2/2/(N — 1).
Error Propagationlf we sum a variety of measures together, then the overakmainty will be
determined by the square root of the sum of the squares:

Oy = [>_ Naid}, (4)
i=1

where here we're using to represent the a priori uncertainties.

What if we have to multiply quantities together? Then we syrlearize about the value
of interest. So ify = z?, and we have an estimate of the uncertainty,id,, then we know that
locally, nearz,, we can expand in a Taylor series:

y(z, + Azx) = y(z,) + dy/dzAx. (5)
This means that | can use my rules for addition to estimatericertainty iny:

dy(z,)
dx

dy(x,) = ’ 0p = 2240, (6)

and you can extend from here.yf= a;z + asz® + az2®, what isé,? When will this estiamte of
uncertainty break down?
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The central limit theorem

One of the reasons we like Gaussian distributions is beazubke central limit theorem. This
says that when we sum variables together, the sum will tetoitard being Gaussian, even if the
individual variables are not. And this is plausible, sinotslof variables we study are derived
guantities and therefore (sort of) Gaussian. Bendat andd®idiscussed summed variables under
the heading “central limit theorem”, but their discussia@®esn’t provide a clear demonstration of
the central limit theorem, and I'm going to leave the formatidation for 221B.

So let’s test this empirically: If we start with data drawaorfr a uniform distribution, and sum
together multiple values, how quickly do our results cogeaio Gaussian?

b=rand( 100000, 100)-.5; %define a matrix with 100 sets of random val ues,
% each with 100000 el enents
cb=cunsun(b, 2); % conpute the sunmation of nmultiple random vari abl es
% now conput e the pdf
clear nml n?
for 1=1:100
[mi(i,:),m2(i,:)]=hist(cb(:,i),-12:.1:12);
end
%
% plot the first five val ues
plot(n2(1,:),nl(1:5,:)/100000/.1,’ LineWdth’, 2)
axis([-5 5 0 1])
yl abel (" probability density’,’ FontSize’' , 14)
x| abel (' random vari abl e’ ,” Font Si ze’ , 14)
legend(’” N=1",  N=2", " N=3","N=4" , " N=5")

The results of this calculation (shown in Figure 1 provideuail evidence for fairly rapid conver-
gence for the uniform distribution.

Non-Gaussian distributions

As we noted before, unsummed geophysical variables are néte-Gaussian. We've talked
about uniform distributions and double exponentials. Heeesome particularly important special
cases.

Sometimes we only measure wind speed, and that's necggsasitive. The Rayleigh distri-
bution is sometimes a good representation of wind speesidifined from the square root sum of

two independent Gaussian components squared,/z? + z3.
2
) Y
ply) = ) exp l—wl- (7)

And that brings us to thg? distribution. Suppose we define a variable:

2= 42+ a4 ..+ 22 (8)
Thenchi? is a random chi-square variable withdegrees of freedom (andis simply the number
of independent elements that we sum.) Then we can define adoakcform for this:

1

p(x2) = 92T (n)2) exp (;) (chi®)"/2)1, %)
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wherel'(n/2) is the gamma function (and this is a function that you norynaticess through a
look-up table or a function programmed into Matlab, for exdah Lots of variables end up look-
ing like chi?, so we'll use this a lot to assess uncertainties, and fonviki need the cumulative
distribution function.

Cumulative distribution functions
Thecumulative distribution functiof(x) is the probability of observing a value less than
It can be computed by integrating the pdf.

Clx) = / p(a')dz'. (10)
C(z) is 0 whenz approaches minus infinity, indicating that there’s a negljgsmall chance of
having an infinitely small value af, and it is 1 when: goes to plus infinity, which says that there
is @ 100% chance of observing some value. The midpoint, whiere = 0.5 is the median.

For a Gaussian, the cdf is defined to be an error function. Fdmn-aquared function, it’s

defined as .

Cw) = gy (0/2:2/2), (11)

where~ is the lower incomplete Gamma function (and like the Gammrection I'(n/2), it is
accessed through a look-up table. What is the cdf of a unifastniloltion?

Are two pdfs different?

So now let’s return to the heart of our problem. How do we tetiio pdfs differ? We've
already noted that two data sets can look wildly differertdbill have the same mean and variance,
so clearly we need something more than just the mean andneariaWe can go back to our
Gaussian overlaid on empirical pdf and eyeball the diffeecto say that they're close enough, or
not plausibly similar. We can evaluate whether the mean tartlard deviation differ. All of this
is good, but it doesn’t exploit the full range of informatimrthe pdf. We need a metric to measure
how different two distributions are.

Here are a couple of strategies. One notion is to ask abouUatpest separation between
2 pdfs. We compute two cdfs—in this case one empirical andtbeeretical, but we can also
do this with two empirical cdfs. We find the maximum separatietween the distributions, the
Komogorov-Smirnov statistic:

D, = sup|Cy(z) — C(x)| (12)

and then we can predict the probability that a data set witkements should differ from the ideal
distribution byD,,. Matlab has a “kstest” function (or “kstest2”) that sortsotiigh the parameters
for this. However, we have to be careful with this, becausgllg our data are correlated, and we
don’t have as many degrees of freedom as we think. The easileion is to decimate the data
set so that the number of elements reflects the number ofeegféreedom.

A second strategy is to bin the data and ask whether the nuphbata in the bin is consistent
with what we'd expect, using @i statistics. In this case for comparisons with a theorefidé|

=y o 13)

i T
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whereN; is the observed number of events in biandn; is the theoretical or expected number of
events in bini. For comparisons between two distributions,

N; — M;)?
¢ =y B A 14)

i

whereN; and M; are each observed numbers of events for:bifihe values ofy? are evaluated
using thex? probability function@(x?|v), which is an incomplete gamma function, wheris the
number of bins (or the number of bins minus one, dependingoomalization). In Matlab this is

gammai nc(chi _squared/ 2, nu/ 2)

Questions about pier data
Here are your questions:

1. What methods have been used to collect measurements orethana how consistent are
they?

2. What variables are collected? What is the formal uncegtainthat is the sampling fre-
quency?

When did automated sampling start? When did automated sangért being reliable?
What level of adjustment is applied to make manual and aatiettdata match?

What has been published about these data?

How often are the sensors serviced?

What accounts for gaps in the data?

How hands on is the automated system?

© © N o 0 &~ W

What depths are the sensors?

10. Where are the sensors?

11. Are multiple sensors used are merged?

12. What is the local geographic variability?

13. What is the time of day of measurement? How clearly is thatichented?

14. What does instrument failure look like in the data recerds
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Figure 1: Probability density function for summed data drawom a uniform distribution. If
N = 1, so only one data value is used, the distribution is unifofinN = 2, is is a triangle
distribution. AsN increases, the distribution rapidly evolves to more chpsesemble a normal
distribution.



