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Lecture 6:
Reading: Bendat and Piersol, Ch. 2.1-2.2

Recap
Last time we looked at the Fourier transform. We considered cosine and sine transforms,

derived coefficients (aq andbq) for cosine and sine, and then showed that we could recombinethese
to make complex coefficients forei2πqf1t ande−i2πqf1t. We found these coefficients to be complex
conjugates of each other. Since cosine/sine transformations and Fourier transforms usinge±i2πqf1t

are closely related, we can express results of one in terms ofthe other. In other words, instead
of computing

∑N
j=1

xj cos(ωjt) and
∑N

j=1
xj sin(ωjt), we can instead find

∑N
j=1

xj exp(iωjt) and
then use the real and imaginary parts to represent the cosineand sine components.

More on the formalism of the Fourier transform
Now we can use this to verify that our Fourier coefficients areconsistent. If I have a data set

x(t) that can be expressed as

x(t) =
∞

∑

n=−∞

an exp(iσnt) (1)

and

am =
1

T

∫ T/2

−T/2

x(t) exp(−iσmt) dt (2)

then let’s check that our coefficients work out. We can substitute inx(t) to obtain

am =
1

T

∫ T/2

−T/2

∞
∑

n=−∞

an exp(iσnt) exp(−iσmt) dt (3)

=
1

T

∫ T/2

−T/2

∞
∑

n=−∞

an exp(i(σn − σm)t) dt (4)

=
∞

∑

n=−∞

an

T

∫ T/2

−T/2

∞
∑

n=−∞

an exp(i(σn − σm)t) dt. (5)

Whenn = m, the integral goes toT , and the summed expression becomesan. Whenn 6= m,
we’re dealing with orthogonal cosines and sines, and the integral goes to zero. Thus the net result
is that

am =
∞

∑

n=−∞

anδnm (6)

= am (7)

whereδnm is called the Kronecker delta function, withδnm = 1 if n = m andδnm = 0 otherwise.
(Formally in continuous form theδ function can be thought of as a distribution, like a pdf, that
has shrunk to be infinitely high and infinitesimally narrow, so that the area under the distribution is
exactly 1.)

Three great traits of the Fourier transform
We’ve talked about the effectiveness of the Fourier transform for identifying frequencies that

are particularly energetic without having to know a priori what frequencies might have resonant
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peaks, and we’ve noted that the Fourier transform is useful for evaluating the size of one peak
relative to another.

1. Derivatives in time become multiplication in the frequency domain.Fourier coefficients have
some additional mathematical power. For example, suppose Iwant to take the time derivative of
my data. If I start with

A(t) =
∞

∑

n=−∞

ane
iσnt (8)

then
∂A(t)

∂t
=

∞
∑

n=−∞

an
∂eiσnt

∂t
=

∞
∑

n=−∞

iσnane
iσnt (9)

So the first derivative become a multiplication by frequency. Higher derivatives are similarly sim-
ple

∂qA(t)

∂t1
=

∞
∑

n=−∞

(iσn)qane
iσnt. (10)

Integration can be represented as a division operation:

∫

A(t) dt =
∞

∑

n=−∞

(iσn)−1ane
iσnt (11)

though we’ll run into a bit of trouble ifσ0 6= 0, that is if the record has a non-zero mean. That can
mean that we might want to remove the mean before we start doing anything more complicated.

In class we illustrated this by looking at the time series of the Southern Annular Mode from
http://www.nerc-bas.ac.uk/icd/gjma/sam.html. I had done a bit of pre-editing of the ASCII data
file to remove the header and make it a full matrix. Then we did the following

% read the data
data=load(’sam_nohead.txt’);
data=data(:,2:13); % remove the first column with the years
data=data’; % rotate the data so that months run down. By doing

% this, we can obtain a time series by using data(:);
%
% compute FFTs
fft_data = fft(data(1:717)); % eliminate the last 3 points which

% were NaN
fft_ddata = fft(diff(data(1:717))); % compute the fft of the first

% derivative
%
% plot comparisons
semilogy(0:716,abs(fft_data).ˆ2); % plot the squared amplitude of

% the fft note the symmetry, since we haven’t truncated
% at the Nyquist frequency

hold on
semilogy(0:715,abs(fft_ddata).ˆ2,’r’); % plot the squared amplitude

% of the first derivative
semilogy(0:357,abs(fdata(1:358)).ˆ2 . * ((0:357)).ˆ2 /715/25,’m’)

http://www.nerc-bas.ac.uk/icd/gjma/sam.html


UCSD—SIOC 221A: (Gille) 3

% plot the amplitude scaled by frequency, with an arbitrary
% multiplicative factor to help us get the amplitudes to match

legend(’squared fft of data’,’squared fft of data derivative’,...
’frequency squared times squared fft of data’)

The results are shown in Figure 1. Here we’ve done this is the sloppiest way possible, but it still
gives us a demonstration that the fft of the first derivative has the same spectral structure as the fft
multiplied by frequency

2. Fourier transforms simplify convolution.
Suppose you plot some noisy data—the data features crazy amplitude swings, and no one

can make any sense of it, but you think that hiding behind all this noise, there might be a slowly
varying signal. You might be told, just do a running mean to smooth it out. That running mean is
a convolution.

Convolution plays an important role in thinking about the Fourier transform, so we need to
spend a little time on the concept. Here’s the basic convolution integral:

y(t) =

∫

∞

−∞

h(τ)x(t − τ)dτ. (12)

You can think ofx as the data, andh as a filtering operator (such as a “boxcar” filter, or a triangle
filter, or a roughly Gaussian-shaped window, or anything else that suits you.

In Matlab you can do this as:

y=conv(data(:),boxcar(12)/12);

which produces the same results as:

y=filter(boxcar(12)/12,1,data(:));

In both cases these will be shifted by half the width of the filter, so we can plot:

plot(data(:))
hold on
t(-6:731-7,conv(data(:),boxcar(12)/12),’r’,’LineWidth’,2)
xlabel(’time (months)’,’FontSize’,14)
ylabel(’SAM’,’FontSize’,14)
legend(’monthly SAM’,’one-year running mean of SAM’)

See Figure 2
Formally the notation for a convolution of two recordsh andx is written

h ∗ x =

∫

∞

−∞

h(τ)x(t − τ)dτ. (13)

What happens if we Fourier transform this?

F(h ∗ x) =

∫

∞

−∞

[
∫

∞

−∞

h(τ)x(t − τ)dτ

]

e−itσ dt (14)

=

∫

∞

−∞

h(τ)

∫

∞

−∞

[

x(t − τ)e−itσ dt
]

dτ (15)

=

∫

∞

−∞

h(τ)e−iτσF(x(σ)) dτ (16)

= F(h)F(x) (17)
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where here I’ve represented the Fourier transform with a script F .
This has profound consequences. It means that anything thatrequired a convolution in the

time domain I can handle trivially in the Fourier domain. Suppose I want to filter my data. If I
don’t like the hassle of convolving, I can just Fourier transform, multiply by the Fourier transform
of my filter, and inverse Fourier transform. This will prove to be amazingly powerful.

3. Parseval’s Theorem
We’ll save this for next time.

Red, white, and blue spectra
Now a little digression. Let’s jump ahead and look at a few spectra. We use words associated

with light to talk about spectra. Red colors have long wavelengths (e.g. infrared), while blues and
purples have short wavelengths (e.g. ultraviolet). If a spectrum is dominated by low frequencies
or long wavelengths, we refer to it as “red”. If it is dominated by short wavelengths or high
frequencies, is is “blue”. If it has nearly the same energy levels at all frequencies or wavelengths,
then it is “white”, like the white broad-spectrum lights that we use for electric lighting.
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Figure 1: Squared Fourier amplitudes computed from the timeseries of the Southern Annular
mode, as discussed in the text.
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Figure 2: Time series of the Southern Annular Mode (SAM) and aone-year running mean.


