
UCSD—SIOC 221A: (Gille) 1

Lecture 16:
Reading: Bendat and Piersol, Ch. 9.1-9.2

Recap
We’ve looked at a couple examples of coherence calculations along with some (incomprehen-

sible) figures from published cases. The key feature of coherence is that it allows you to decide if
two records vary in a consistent way at any given frequency. This is a subtle point: if you view the
world from the perspective of a Fourier transform, everything is sinusoidal, and naturally all data
records vary sinusoidally, although the phasing of record x could differ from the phasing of record
y. When we compute coherence, we ask whether the phasing (at frequency σ or wavenumber k)
between x and y is consistent between different chunks of the data records. To compute coherence
we need to segment our data; for the same reasons that we detrend and window when we compute
spectra, we should detrend and window when we compute coherence.

Coherence calculations produce two results: a coherence that varies between 0 and 1, and a
phase that varies between−π and π (or equivalently from 0 to 360 degrees or -180 to 180 degrees.)

Uncertainties of coherence and phase: What do we believe?
We talked about coherence uncertainties last time, but we didn’t finish sorting out phase un-

certainties, and I gave you three different formulations. Which one do we trust?
First a little terminology. Bendat and Piersol provide a good discussion of bias and uncertain-

tites in spectral estimators. As a starting point, the variance of the quantity that we want to estimate
is

var[Ã] = E[Ã2]− A2, (1)

where A is the true value, and Ã is the unbiased estimate (so E[Ã] = A. For spectral estimators
we tend to talk about the normalized error:

ε2 =
varÃ
A2

. (2)

Bendat and Piersol first derive relationships for the variance of the spectrum and cross-
spectrum in the case of one segment and two degrees of freedom (see appendix). They then note
that variance scales with 1/n, where n is the number of degrees of freedom, so that variance can
be inferred for spectra and cross-spectra with any number of degrees of freedom (by dividing by
nd the number of segments).

Uncertainty for phase is often reported with the formula I provided last time

δφ = sin−1

[
tα,2nd

√
1− γ2

xy

2ndγ2
xy

]
(3)

where tα,2nd
is identified as the “Student t distribution”. Watch out! What we actually want is

not the “Student t distribution” but the inverse of the distribution. Given an upper cut-off point
of α/2 = 0.975 for the cdf of the t-distribution, we’re looking for the corresponding value of the
function. In case you have doubts, check Table A9.3 of Koopmans, which shows, for example, that
t(0.975, 20) = 2.086. This can be computed in Matlab using tinv.

But when we plot this up, for our white noise case, it seems to be a complex number, since
we’ve ended up with some out of range values for the arcsine—perhaps this isn’t surprising since
the phase is ill-defined for white noise. Bendat and Piersol provide a different formulation, which

UCSD—SIOC 221A: (Gille) 2

has the virtue of producing a real number:

std [φxy(f)] ≈
[
1− γ2

xy(f)
]1/2

|γxy(f)|
√

2nd

(4)

Zwiers and Von Storch quote Hannan and provide:

δφ = sin−1

[
t(1+p)/2,2nd−2

γ−2
xy − 1

2nd − 2

]
, (5)

where p is the confidence interval (e.g. 0.95), so (1 + p)/2 and (1− p)/2 provide the limits for p%
significance levels. In Matlab, these become:

% cab is covariance between a and b
alpha = .05;
nd=10; % # of segments
p=1-alpha;
delta_phase = asin(tinv(.95,2*nd)*...

sqrt((1-abs(cab).ˆ2)./(abs(cab).ˆ2*(2*nd))));
delta_phase2 = sqrt((1-cab.ˆ2)./(abs(cab).ˆ2*2*nd));
delta_phase3 = asin(tinv(.975,2*nd-2)*(1 ./cab.ˆ2-1)/(2*nd-2));

The expressions are similar, though not identical. Which is most appropriate? We can test this out
by creating a fake data set with a known phase relationship:

a=randn(100,1000)+ cos(2*pi/10*(1:100)’)*ones(1,1000);
b=randn(100,1000) + sin(2*pi/10*(1:100)’)*ones(1,1000);
fa=fft(a);
fb=fft(b);
fab=conj(fa).*fb;
faa=conj(fa).*fa;
fbb=conj(fb).*fb;

cab=abs(mean(fab,2)) ./sqrt(abs(mean(faa,2)) .* abs(mean(fbb,2)));

m=10;
clear phase_c
for i=1:1000/m
phase_c(:,i)=atan2(-imag(mean(fab(:,(i-1)*m+1:i*m),2)),...

real(mean(fab(:,(i-1)*m+1:i*m),2)));
end

nd=m;
delta_phase = asin(tinv(.95,2*nd)*...

sqrt((1-abs(cab).ˆ2)./(abs(cab).ˆ2*sqrt(2*nd))));
delta_phase2 = sqrt((1-cab.ˆ2)./(abs(cab).ˆ2*2*nd));
delta_phase3 = asin(tinv(.975,2*nd-2)*(1 ./cab.ˆ2-1)/(2*nd-2));
% compare results
[delta_phase(11) delta_phase2(11) delta_phase3(11)]
std(phase_c(11,:))

UCSD—SIOC 221A: (Gille) 3

It’s clear from these tests that (a) the distribution of the phases should be roughly Gaussian, (b)
Bendat and Piersol’s representation for the standard deviation of the phase (delta phase2) is rela-
tively reliable, (c) the inverse sine formulations should produce phase errors representing the 95th
percentile.

More on degrees of freedom for windowed segments
When we talked about the sinc function, windowing, and the use of overlapping segments, we

also noted that when you overlap segments you reduce the number of degrees of freedom. How
much do you reduce the number of degrees of freedom? If you look this up in the 2nd edition
of Emery and Thomson, you find a nice table (their Table 5.6.4), ostensably lifted from Priestley.
Priestley’s results are nicely discussed by Koopmans (The Spectral Analysis of Time Series, Aca-
demic Press, 1974). Emery and Thomson describe the table as representing the equivalent degrees
of freedom for windowed “block averaged” spectra.

Window type Equivalent degrees multiplier ×
of freedom (ν) double number segments

Truncated peridogram (boxcar) N/M m/2
Bartlett (triangle) 3N/M 1.5 m
Daniell (sinc) 2N/M m
Parzen 3.708614N/M 1.354 m
Hanning 8/3N/M 4/3 m
Hamming 2.5164N/M 1.25 m

Table 1: Table 5.6.4 from Emery and Thomson showing “Equivalent degrees of freedom for spectra
calculated using different windows.”

The windowed spectra that we’ve used as a basic approach in class are referred to by a num-
ber of names in the literature. Some textbooks refer to windowing as “tapering”. And the formal
method is sometimes called the Welch method. Percival and Walden (Spectral Analysis for Physi-
cal Applications, Cambridge University Press, 1993) provide a detailed discussion of this approach
under the name “Welch’s Overlapping Segment Averaging (WOSA)”.

A little further exploration of the literature shows that the values in the table are incorrectly
labeled and actually represent degrees of freedom for spectra determined by filtering or averaging
adjacent frequencies from an initial spectral estimate. As we pointed out in class, if you filter in
frequency, you can increase your degrees of freedom just the way you increase degrees of freedom
by using multiple segments. And you can refine your filtering to reduce spectral ringing effects
by using a carefully constructed filter. While people use the same types of filters for time domain
windowing/tapering and for frequency domain filtering, the effect is not identical. (If we wanted
an identical effect, we’d need to use the Fourier transform of the time domain window to filter in
the frequency domain. You could do that, but it’s not what we usually envision when we talk about
windowing or tapering, and it’s not what Emery and Thomson seem to describe.) What this means
is that the tables of “equivalent degrees of freedom” for the frequency domain don’t actually work
for windowed time domain data.

However, all is not lost. Percival and Walden provide a full derivation of the actual degrees of

UCSD—SIOC 221A: (Gille) 4

freedom for overlapping segments. They define the following terms:

N = total length of record
NB = number of blocks
NS = segment length or block size

n = shift factor or number of points of overlap between segments
h = window, normalized so that h2 sums to 1.

They point out that the covariance between adjacent segments determines the adjustment to the
degrees of freedom, and this depends on h.

In this framework, the variance of the spectral estimate is:

var
{

Ŝ(WOSA)(f)
}

=
1

NB

NB−1∑
j=0

var
{

Ŝjn+1(f)
}

+
2

NB

∑
j<k

cov
{

Ŝjn+1(f), Ŝkn+1(f)
}

, (6)

where j and k are indices for separate but overlapping segments. The variance of the jth spectrum
should converge to the canonical spectrum:

var
{

Ŝjn+1(f)
}
≈ S2(f). (7)

The covariance depends on the overlap of the tapers or windows:

cov
{

Ŝjn+1(f), Ŝkn+1(f)
}
≈ S2(f)

∣∣∣∣∣
NS∑
t=1

htht+|k−j|n

∣∣∣∣∣
2

, (8)

with ht defined to be zero when t is out of range (i.e. t > NS). This means that:

var
{

Ŝ(WOSA)(f)
}

≈ S2(f)

NB

1 +
2

NB

∑
j<k

∣∣∣∣∣
NS∑
t=1

htht+|k−j|n

∣∣∣∣∣
2
 (9)

=
S2(f)

NB

1 + 2

NB−1∑
m=1

(
1− m

NB

) ∣∣∣∣∣
NS∑
t=1

htht+mn

∣∣∣∣∣
2
 . (10)

Thus for a full record with arbitrary overlap:

ν ≈ 2NB

1 + 2
∑Nb−1

m=1

(
1− m

NB

) ∣∣∣∑NS

t=1 htht+mn

∣∣∣2 . (11)

This formulation allows for arbitrary levels of overlap, so you could imagine starting a new segment
every data point and having to contend with with lots of complicated covariances between adjacent
segments.

For practical purposes, we typically work with 50% overlap, so n = NS/2. In this case,
Percival and Walden show that the equation for the effective degrees of freedom simplifies to

ν ≈ 2NB

1 + 2
(
1− 1

NB

) ∣∣∣∑NS/2
t=1 htht+NS/2

∣∣∣2 . (12)

UCSD—SIOC 221A: (Gille) 5

In the limit of large NB and many samples, it’s relatively straightforward to find an analytic
solution:

ν ≈ 2NB

1 + 2
∣∣∣∫ L/2

0
h(t)h(t + L/2) dt

∣∣∣2 . (13)

subject to the requirement that the window normalization is:∫ L

0

h(t)2 dt = 1. (14)

Thus for a boxcar filter, h(t) = 1/
√

L, and∫ L/2

0

h(t)h(t + L/2) dt =

∫ L/2

0

1

L
dt = fractL|L/2

0 =
1

2
. (15)

Thus
ν ≈ 2NB

1 + 2
∣∣1
2

∣∣2 =
2NB

1 + 1
2

=
4NB

3
. (16)

Either analytically, or by plugging in normalized discrete window values ht, we can compute
the adjustments to our effective degrees of freedom shown in Table 2. You’ll see that these values
provide a fairly effective match to the values that you obtained from Monte Carlo simulation.

Window type Equivalent degrees
of freedom (ν)

Boxcar 4/3
Triangle 16/9
Hanning 36/19 ≈ 1.90
Hamming ∼1.80

Table 2: Effective number of degrees of freedom relative to the total number of segments, using
50% overlap. (With no overlap, the equivalent degrees of freedom would be double the number of
segments.)

So what of the other texts? The 2014 edition of Thomson and Emery is as misleading as the
earlier editions. Von Storch and Zwiers, who are usually fairly lucid on data analysis, strongly
favor filtering in the frequency domain so don’t consider the impact of windowing or tapering in
the time domain. Priestley also focuses largely on spectra computed from the autocovariance and
spectra computed by filtering the periodogram. Their published tables are intended to provide
guidance on the “lag window” (e.g. λ(t)) for spectra computed from the autocovariance, and the
“spectral window”, W (f), which is Fourier transform of the lag window. When λ(t) and W (f) are
used as a Fourier transform pair, they should have equivalent impacts on the degrees of freedom.

Finally, Percival and Walden note that we can also consider overlaps other than 50%, by
adjusting m in their original equation:

ν ≈ 2NB

1 + 2
∑Nb−1

m=1

(
1− m

NB

) ∣∣∣∑NS−mn
t=1 htht+mn

∣∣∣2 . (17)

Their Figure 293 shows degrees of freedom as a function of overlap for the Hanning window. We
can code this in Matlab to consider other windows as well, as illustrated in Figure 1:

UCSD—SIOC 221A: (Gille) 6

Ns=512;
n=256;
N=Ns*100;
Nb_theory=N/Ns;

h=ones(Ns,1)/sqrt(Ns);
for n=1:Ns-1
Nb=round((N-Ns)/n+1);
sumh=[];
for m=1:Nb-1
if(Ns-m*n>=1)
sumh(m)=(1-m/Nb)*abs(sum(h(1:Ns-m*n).*h(1+m*n:Ns)))ˆ2;

end
end
denom=1+2*sum(sumh);
nu_boxcar(n)=2*Nb/denom;
end

h=sqrt(2/3/Ns)*(1-cos(2*pi*(1:Ns)/Ns));

for n=1:511
Nb=floor((N-Ns)/n+1);
sumh=[];
for m=1:Nb-1
if(Ns-m*n>=1)
sumh(m)=(1-m/Nb)*abs(sum(h(1:Ns-m*n).*h(1+m*n:Ns)))ˆ2;

end
end
denom=1+2*sum(sumh);
nu_hanning(n)=2*Nb/denom;
end

hold off
plot(1-(1:2:Ns-1)/Ns,nu_boxcar(1:2:end)/Nb_theory,’LineWidth’,3);
hold on
plot(1-(1:2:Ns-1)/Ns,nu_hanning(1:2:end)/Nb_theory,’LineWidth’,3);
set(gca,’FontSize’,16)
xlabel(’Fractional overlap between segments’,’FontSize’,16)
ylabel(’Effective dof relative to # non-overlapping segments’,...

’FontSize’,16)
legend(’Boxcar’,’Hanning’)

Appendix: More detail on variance of cross-spectra

UCSD—SIOC 221A: (Gille) 7

If we have two degrees of freedom, the cross spectrum is

|ĜXY (f)|2 = Ĝ∗
XY ĜXY (18)

= |X∗(f)Y (f)|2 (19)
= X(f)Y ∗(f)X∗(f)Y (f) (20)

So trying all combinations to get the sum of the 4-term product:

〈|ĜXY (f)|2〉 = 〈XX∗〉〈Y Y ∗〉+ 〈XY ∗〉〈X∗Y 〉+ 〈XY 〉〈X∗Y ∗〉 (21)
= GXXGY Y + |GXY |2 (22)

where G here is the total cross-spectrum. The variance is then

var[ĜXY] = 〈|ĜXY (f)|2〉 − |ĜXY (f)|2 (23)
= GXXGY Y (24)

=
|GXY |2

γ2
xy

(25)

where γxy is the coherence.
With more degrees of freedom, error scales with the square root of the number of samples,

just like the standard error:

varGXX =
G2

xx

nd

(26)

varGY Y =
G2

Y Y

nd

(27)

varGXY =
|GXY |2

γ2
xynd

(28)

This scaling gives us the uncertainty for the coherence and phase after some manipulation. (See
Bendat and Piersol, Ch. 9 for details.)

This means that the normalized uncertainty of GXY is

ε[|ĜXY |] =
std[GXY]

GXY

=
1

|γxy|
√

nd

(29)

UCSD—SIOC 221A: (Gille) 8

Figure 1: Ratio of degrees of freedom ν relative to nominal number of segments available if no
overlapping is used for Hanning window and boxcar window.

