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Lecture 3:

Reading: Bendat and Piersol, Ch. 3.1-3.4, Ch. 4

Announcements: discussion 10:00-11:00 Wednesdays, in Spiess 330

Next Tuesday: field trip: meet at pier

Recap

Last time we talked about some probability density functions, the fact that we often assume

Gaussianity, and that often geophysical variables aren’t really Gaussian. We also noted that if we

know the mean and standard deviation for a set of variables, then we determine the mean and

standard deviation for a summed variable. Now let’s put some of these concepts to work for us.

One of the clever aspects of the pdf is that we can use it to determine an expected value:

E(x(k)) =
∫

∞

−∞

xp(x) dx = µx. (1)

Why does this work? In essence, I reorder all the values in my data set and ask what’s the prob-

ability of finding x in bin 1, what’s the probability of finding x in bin 2, etc? Or in other words,

what fraction of my total record is in bin 1, what fraction is in bin 2, etc? And summing this way,

I’ll find the mean.

We can also use this for x2 or for (x − µx)
2.

E((x(k) − µk)
2) =

∫

∞

−∞

(x − µx)
2p(x) dx = σ2

x. (2)

Error propagation, and the central limit theorem

We left off with a discussion of the standard deviation of summed variables: If x(k) =
∑N

i=1 aixi(k), then the mean of x is

µx = E(x(k)) = E

[

N
∑

i=1

aixi(k)

]

=

[

N
∑

i=1

aiE(xi(k))

]

=
N
∑

i=1

aiµi. (3)

and

σ2
x = E

[

(x(k) − µx)
2
]

== E

[

N
∑

i=1

ai(xi(k) − µi)

]2

=
N
∑

i=1

a2
i σ

2
i . (4)

And we noted that the standard error of the mean is σ/
√

N .

As a footnote to this, the standard error of the variance is σ2
√

2/(N − 1).
Error Propagation If we sum a variety of measures together, then the overall uncertainty will be

determined by the square root of the sum of the squares:

δy =

√

√

√

√

N
∑

i=1

a2
i δ

2
i , (5)

where here we’re using δi to represent the a priori uncertainties.

What if we have to multiply quantities together? Then we simply linearize about the value

of interest. So if y = x2, and we have an estimate of the uncertainty in x, δx, then we know that

locally, near xo, we can expand in a Taylor series:

y(xo + ∆x) = y(xo) + dy/dx∆x. (6)
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This means that I can use my rules for addition to estimate the uncertainty in y:

δy(xo) =

∣

∣

∣

∣

∣

dy(xo)

dx

∣

∣

∣

∣

∣

δx = 2xoδx (7)

and you can extend from here. If y = a1x + a2x
2 + a3x

3, what is δy? When will this estimate of

uncertainty break down?

The central limit theorem

One of the reasons we like Gaussian distributions is because of the central limit theorem. This

says that when we sum variables together, the sum will tend to toward being Gaussian, even if the

individual variables are not. And this is plausible, since lots of variables we study are derived

quantities and therefore (sort of) Gaussian. Bendat and Piersol discussed summed variables under

the heading “central limit theorem”, but their discussion doesn’t provide a clear demonstration of

the central limit theorem, and I’m going to leave the formal derivation for 221B.

So let’s test this empirically: If we start with data drawn from a uniform distribution, and sum

together multiple values, how quickly do our results converge to Gaussian?

b=rand(100000,100)-.5; % define a matrix with 100 sets of random values,

% each with 100000 elements

cb=cumsum(b,2); % compute the summation of multiple random variables

% now compute the pdf

clear m1 m2

for i=1:100

[m1(i,:),m2(i,:)]=hist(cb(:,i),-12:.1:12);

end

%

% plot the first five values

plot(m2(1,:),m1(1:5,:)/100000/.1,’LineWidth’,2)

axis([-5 5 0 1])

ylabel(’probability density’,’FontSize’,14)

xlabel(’random variable’,’FontSize’,14)

legend(’N=1’,’N=2’,’N=3’,’N=4’,’N=5’)

The results of this calculation (shown in Figure 1 provide visual evidence for fairly rapid conver-

gence for the uniform distribution.

Non-Gaussian distributions

As we noted before, unsummed geophysical variables are often non-Gaussian. We’ve talked

about uniform distributions and double exponentials. Here are some particularly important special

cases.

We noted last time that the Rayleigh distribution is a good representation for wind speed,

which is necessarily positive. It is defined from the square root sum of two independent Gaussian

components squared, y =
√

x2
1 + x2

2.

p(y) =
y

σ2
exp

[

− y2

2σ2

]

. (8)
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And that brings us to the χ2 distribution. Suppose we define a variable:

χ2
n = z2

1 + z2
2 + z2

3 + ... + z2
n. (9)

Then χ2
n is a random chi-square variable with n degrees of freedom (and n is simply the number

of independent elements that we sum.) Then we can define a functional form for this:

p(χ2
n) =

1

2n/2Γ(n/2)
exp

(

−χ2

2

)

(χ2)(n/2)−1, (10)

where Γ(n/2) is the gamma function (and this is a function that you normally access through

a look-up table or a function programmed into Matlab, for example). Lots of variables end up

looking like χ2, so we’ll use this a lot to assess uncertainties, and for this we’ll need the cumulative

distribution function.

Cumulative distribution functions

The cumulative distribution function C(x) is the probability of observing a value less than x.

It can be computed by integrating the pdf.

C(x) =
∫ x

−∞

p(x′)dx′. (11)

C(x) is 0 when x approaches minus infinity, indicating that there’s a negligibly small chance of

having an infinitely small value of x, and it is 1 when x goes to plus infinity, which says that there

is a 100% chance of observing some value. The midpoint, where C(x) = 0.5 is the median.

For a Gaussian, the cdf is defined to be an error function. For a chi-squared function, it’s

defined as

C(x) =
1

Γ(n/2)
γ(n/2, x/2), (12)

where γ is the lower incomplete Gamma function (and like the Gamma function Γ(n/2), it is

accessed through a look-up table. What is the cdf of a uniform distribution?

Are two pdfs different?

So now let’s return to the heart of our problem. How do we tell if two pdfs differ? We’ve

already noted that two data sets can look wildly different but still have the same mean and variance,

so clearly we need something more than just the mean and variance. We can go back to our

Gaussian overlaid on empirical pdf and eyeball the difference to say that they’re close enough, or

not plausibly similar. We can evaluate whether the mean and standard deviation differ. All of this

is good, but it doesn’t exploit the full range of information in the pdf. We need a metric to measure

how different two distributions are.

Here are a couple of strategies. One notion is to ask about the largest separation between

2 pdfs. We compute two cdfs—in this case one empirical and one theoretical, but we can also

do this with two empirical cdfs. We find the maximum separation between the distributions, the

Komogorov-Smirnov statistic:

Dn = sup
n

|Cn(x) − C(x)| (13)

and then we can predict the probability that a data set with n elements should differ from the ideal

distribution by Dn. Matlab has a “kstest” function (or “kstest2”) that sorts through the parameters

for this. However, we have to be careful with this, because usually our data are correlated, and we
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don’t have as many degrees of freedom as we think. The easiest solution is to decimate the data

set so that the number of elements reflects the number of degrees of freedom.

A second strategy is to bin the data and ask whether the number of data in the bin is consistent

with what we’d expect, using a χ2 statistics. In this case for comparisons with a theoretical pdf,

χ2 =
∑

i

(Ni − ni)
2

ni

, (14)

where Ni is the observed number of events in bin i, and ni is the theoretical or expected number of

events in bin i. For comparisons between two distributions,

χ2 =
∑

i

(Ni − Mi)
2

Ni + Mi

, (15)

where Ni and Mi are each observed numbers of events for bin i. The values of χ2 are evaluated

using the χ2 probability function Q(χ2|ν), which is an incomplete gamma function, where ν is the

number of bins (or the number of bins minus one, depending on normalization). In Matlab this is

gammainc(chi_squared/2,nu/2)

Questions about pier data

Here are some questions (yours plus some stray questions):

1. What methods have been used to collect measurements on the pier, and how consistent are

they?

2. What variables are collected? What is the formal uncertainty? What is the sampling fre-

quency?

3. When did automated sampling start? When did automated sampling start being reliable?

4. What are purposes of automated vs manual systems?

5. What level of adjustment is applied to make manual and automated data match?

6. What has been published about these data?

7. How often are the sensors serviced?

8. What accounts for gaps in the data?

9. How hands on is the automated system? What’s really automatized?

10. What depths are the sensors?

11. Where are the sensors?

12. Are multiple sensors used are merged?

13. What is the local geographic variability?

14. What is the time of day of measurement? How clearly is that documented?
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15. What does instrument failure look like in the data records?

16. What error flags are available for the data?

17. How long are records?

18. How is equipment calibrated? And how often?
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Figure 1: Probability density function for summed data drawn from a uniform distribution. If

N = 1, so only one data value is used, the distribution is uniform. If N = 2, is is a triangle

distribution. As N increases, the distribution rapidly evolves to more closely resemble a normal

distribution.


