
UCSD—SIOC 221A: (Gille) 1

Lecture 5:
Reading: Bendat and Piersol, Ch. 4.5.1, 11.1, 11.2

Recap
Last time we looked at least-squares fitting. We derived the formula for a least-squares fit

and showed that we could find a linear trend and a sinusoidal variation. Then we asked how many
functions we could fit to our data. In the limit of maximum fitting, if we have N data points, we
can fit N functions to our data. We noted that a set of N sines and cosines (so N/2 pairs of sine and
cosine) ranging from frequency 0 to frequency N/2 cycles per N points (the Nyquist frequency)
will complete fit our data. This is because the set of sines and cosines are orthogonal to each other
(even for discrete data) and they fully span the data.

Least-squares fits and misfit
You’ll recall that last time we considered a least-squares fit of the form

Ax + n = y. (1)

We noted that the misfit is defined as a squared quantity so should follow the χ2 statistic. (Yet
another use of χ2.) If I believe my a priori uncertainties in my data are σ, then I expect that my
misfit should roughly match my uncertainty so I can define a weighted summed misfit:

χ2 =
N∑

i=1

(
yi −

∑M
j=1 ai,jxj

σi

)2

. (2)

Here we’re summing the squared misfit of each row in our matrix equation, weighted by our
uncertainty. If our error bars make sense, then this should yield about N , reduced by the number
of functions were fitting. So we expect that χ2 will be about N − M , which is the number of
degrees of freedom. Formally we can decide if our fit is too good to be true by evaluating χ2 using
the incomplete gamma function, which yields the probability that this should occur by chance:

p=gammainc(chi_squared/2,nu/2)

This tells you the probability of finding a fit this good purely by chance. If p is near 1, it can
tell us that our fit is too good to be true. If p is too small, it can tell us that our fit isn’t properly
representing the data.

What happens in the limit when we fit N data points with N columns in matrix A? The matrix
A is an N ×N square matrix, and we are solving for as many unknowns in x as we had data in y.
In this case, if χ2 is zero, p will be 1, warning us that we’re over-fitting our data. What happens to
our noise n? By using N orthogonal functions, we obtain a perfect fit and the noise is zero. That’s
convenient, but it loses any information that we might have had about uncertainties in our data. If
we made noisy measurements, we might not have any reason to expect a perfect fit, but we’ll have
one anyway.

Orthogonality and Sines and Cosines
Last time we talked about the importance of having independent columns in our matrix A and

noted that sines and cosines are particularly useful since they are orthogonal. Let’s work through
this a little more carefully.

UCSD—SIOC 221A: (Gille) 2

Consider a record of duration T with N data points. I can imagine squeezing into the period
T , one sine wave, or two, or three, or four. How do I tell if my records are orthogonal?∫ T

0
sin

(
2πnt

T

)
sin

(
2πmt

T

)
dt =

1

2

∫ T

0
cos

(
2π(n−m)t

T

)
− cos

(
2π(n + m)t

T

)
dt

=
1

2

T

2π

sin
(

2π(n−m)t
T

)
n−m

−
sin

(
2π(n+m)t

T

)
(n + m)

∣∣∣∣∣∣
T

0

= 0 unless n = m

By extension the same applies for two cosines, or a sine multiplied by a cosine.
This means that I can set up a matrix of sines and cosines, in which every column will be

orthogonal to every other column.

A =

 1 cos(ωt) sin(ωt) cos(2ωt) sin(2ωt) · · ·
...

...
...

...
...

 , (3)

where ω = 2π/T and T is the total duration of the data record. The dot product of any two columns
i and j of A is zero if i 6= j. If I have data at N evenly spaced time increments, t1, t2, ...tN , then
this orthogonality property holds for all frequencies from ω through Nω/2. Since I have a sine and
cosine at each frequency (up to frequency Nω/2 where sine might be zero at all points in time),
this means that I can define a total of N independent orthogonal columns in A.

What happens if we want to fit the frequency ω/2? In this case, it won’t be orthogonal to my
other functions over the range of this data. For example, between 0 and T , sin(ω/2) varies from
0 to 1 to 0 and is always positive, meaning that it will be positively correlated with a constant. In
fact, sines and cosines with frequencies that are ω multiplied by integers rangings from 0 to N/2
make a complete set that spans all space, and there are no additional N -element vectors that I can
add to A that would also be orthogonal to all other columns of A.

The orthogonality of the columns of A is really important. It means that my solution for x1

is completely independent of my solution for x2. Here are some results for a set of 128 random
numbers, b.

b̂ = −0.0629− 0.0620 cos(ωt)− 0.1339 sin(ωt) (4)
b̂ = −0.0629− 0.0960 cos(2ωt) + 0.1117 sin(2ωt) (5)
b̂ = −0.0629− 0.0620 cos(ωt)− 0.1339 sin(ωt)− 0.0960 cos(2ωt) + 0.1117 sin(2ωt), (6)

where b̂ is our fitted approximation to b. You can see that the amplitudes of cos(ωt) and cos(2ωt)
are the same regardless of whether A contains 3 columns or 5 columns.

If we take a time series of N elements, then the lowest frequency that we can resolve is 1
cycle per N elements, so cos(2πi/N), where our counter i runs from 1 to N (or from 0 to N − 1).
We can find two coefficients for this: one for the cos component and one for the sin component.

Actually, maybe a better way to think about this is that the lowest frequency we can resolve
is cos(0i/N) = 1, which is a constant and represents the mean. Since sin(0) = 0, there is only a
cosine component for frequency 0.

At any rate, after considering 1 cycle per N points, the next frequency we can resolve that
will actually be fully orthogonal is 2 cycles per N points. We can keep counter upward: 3 cycles
per N points, 4 cycles per N points, and so forth. All of these are guaranteed to be orthogonal over
our domain of N points.

UCSD—SIOC 221A: (Gille) 3

What is the maximum number of cycles that we can resolve in N points? One possibility
would be that the maximum is N cycles per N points. That would require a full sinusoidal oscil-
lation squeezed between data element 1 and data element 2. But if you think about it, we wouldn’t
expect to have enough information to determine the amplitude of a sine wave that had to squeeze
itself between consecutive observations. Moreover if N cycles per N points were the maximum,
this would mean that we’d be solving for 2N coefficients with only N data points. Clearly that
would require more information than we have available.

So the maximum must be less than N . There are two ways to think about this. One way is to
think about the information content of our data. At the most basic level, if I have N elements in my
data matrix, then at best, I can hope to have N independent equations, so I can fit N coefficients
as an exactly determined problem. So I can solve for frequencies from 0 cycles per N points to
N/2 cycles per N points, with 2 coefficients for all but the end members of my record. The other
way to think of this is to observe that you’ll need at least 2 data points per cycle to determine
even a minimum amount of information about the sine or cosine amplitudes of your data. So the
highest frequency that you can possibly detect of N/2 cycles per N data points. This is the Nyquist
frequency and it is one of the most central concepts in time series analysis.

And the strategy of least-squares fitting all possible frequencies that can be resolved represents
the discrete Fourier transform. It’s a slow and inefficient Fourier transform, but it is the essence of
this class and it will be the building block for everything we do in the remainder of the quarter.

The Fourier Transform
So our least-squares fit of N data to N sinusoids was clearly too good to be true, but we’re

not doing fitting here, so we’re going to proceed along this line of reasoning anyway. Our goal is
to rerepresent all of the information in our data by projecting our data onto a different basis set.
In this case we’ll take the projection, warts and all, and we want to make sure we don’t lose any
information.

So we want to represent our data via sines and cosines:

x(t) =
a0

2
+

∞∑
q=1

(aq cos(2πqf1t) + bq sin(2πqf1t)) , (7)

where fq = 1/Tp, and Tp is the duration of the record (following Bendat and Piersol). Formally
we should assume that the data are periodic over the period Tp. We find the coefficients a and b by
projecting our data onto the appropriate sines and cosines:

aq =
1

Tp

∫ Tp

0
x(t) cos(2πqf1t) dt (8)

and
bq =

1

Tp

∫ Tp

0
x(t) sin(2πqf1t) dt (9)

solved for q = 0, 1, 2,
It’s not much fun to drag around these cosines and sines, so it’s useful to recall that

cos θ =
exp(iθ) + exp(−iθ)

2
(10)

sin θ =
exp(iθ)− exp(−iθ)

2i
, (11)

UCSD—SIOC 221A: (Gille) 4

which means that we could redo this in terms of eiθ and e−iθ. In other words, we can represent our
data as:

x(t) =
∞∑

q=−∞
[âq exp(i2πqf1t)] =

∞∑
q=−∞

[âq exp(iσqt)] (12)

where σq = 2πq/T , and âq represents a complex Fourier coefficient. If we solved for our coeffi-
cients for cosine and sine, then we can easily convert them to find the complex coefficients âq for
exp(iσqt) and exp(−iσqt). Consider :

a cos θ + b sin θ =
a

2
(eiθ + e−iθ) +

b

2i
(eiθ − e−iθ) (13)

=
a− ib

2
eiθ +

a + ib

2
e−iθ. (14)

This tells us some important things. The coefficients for eiθ and eiθ are complex conjugates. And
there’s a simple relationship between the sine and cosine coefficients and the e±iθ coefficients. In-
stead of computing

∑N
j=1 aj cos(ωjt) and

∑N
j=1 bj sin(ωjt), we can instead find

∑N
j=1 âj exp(iωjt)

and then use the real and imaginary parts to represent the cosine and sine components. This gives
us a quick shorthand for representing our results as sines and cosines.

Fourier transform in continuous form
Bracewell’s nice book on the Fourier transform refers to the data as f(x) and its Fourier

transform as F (s), where x could be interpreted as time, for example, and s as frequency. Here’s
I’ve rewritten to follow the same notation as above. In continuous form, the Fourier transform of
x(t) is X(ω) (where ω = qf1), and the process can be inverted to recover x(t).

X(ω) =
∫ ∞
−∞

x(t)e−i2πtω dt (15)

x(t) =
∫ ∞
−∞

X(ω)ei2πtω dω (16)

(following Bracewell).
But there are lots of alternate definitions in the literature:

X(σ) =
∫ ∞
−∞

x(t)e−itσ dt (17)

x(t) =
1

2π

∫ ∞
−∞

X(σ)eitσ dσ (18)

or

X(σ) =
1√
2π

∫ ∞
−∞

x(t)e−itσ dt (19)

x(t) =
1√
2π

∫ ∞
−∞

X(σ)eitσ dσ (20)

So we always have to be careful about our syntax.
Given the vast array of notation, we’re going to try very hard to stick to Bendat and Piersol’s

forms:

X(f) =
∫ ∞
−∞

x(t)e−i2πft dt (21)

x(t) =
∫ ∞
−∞

X(f)ei2πft df (22)

UCSD—SIOC 221A: (Gille) 5

The same questions about choices of notation apply in the discrete form that we consider
when we analyze data. And we can get ourselves really confused. So we have to keep in mind one
rule: we don’t get to create energy. That means that we need to have the same total variance in our
data set in the time domain as we have in the frequency domain. This is Parseval’s theorem, and
we’ll return to it.

One of the glories of the Fourier transform is that we can take all of these projections and
make them extremely efficient through the Fast Fourier Transform (FFT). In principle, FFT’s are
most efficient if you compute them for records that are a power of 2 in length, so 64 or 128 or
256 points for example. But modern FFTs are fast even if your data set doesn’t have 2n elements.
Moreover, a year doesn’t have 2n days, so trying to force a data record to conform to a length of
2n can suppress some of the natural periodicity.

Mathematically the Matlab definitions look like this:

Xk =
N∑

n=1

xn exp(−i2π(k − 1)(n− 1)/N), (23)

where frequency labels k and data labels n go from 1 to N . Here capital letters are used to denote
Fourier transformed variables. Matlab computes this using the command “fft”.

The inverse of the Fourier transform is computed using “ifft” and is defined to be:

xn =
1

N

N∑
k=1

Xk exp(i2π(k − 1)(n− 1)/N) (24)

In Matlab the Fourier transform and inverse Fourier transform become:

f=fft(x)
x_new=ifft(f)

To make Parseval’s theorem work, the variance of our data has to equal the variance of the Fourier
transform. Thus we’ll want to compare:

sum(x.ˆ2)
sum(abs(f).ˆ2)
f’*f
sum(f.*conj(f))

They don’t quite agree, so we’ll see that we should divide the Fourier transform by N , the number
of data points.

What do we gain by Fourier transforming our data?
We live life in the time domain, so it’s sometimes hard to think about the world as seen in

the frequency domain. While linear trends aren’t well represented by the Fourier transform, the
Fourier tranform is particularly effective for representing sinusoidal oscillations. Solar radiation
that warms the Earth varies on a 365.25 day cycle with the seasons, and on a 24 hour cycle, with the
rising and setting of the sun. Ocean tides vary at semidiurnal (12.4 hour) and diurnal frequencies
(as well as being modulated on fortnightly and monthly intervals.) In fact Thus if you look at data
from a tide gauge, you see oscillatory fluctuations at a variety of different frequencies, as shown in
the slides. If we solve for the tidal amplitudes, we find for example:

These complex Fourier coefficients might seem confusing, but they give us a lot of information
about our data, allowing us, for example to tell whether there is more energy at frequency σj

UCSD—SIOC 221A: (Gille) 6

Symbol Frequency (cpd) Amplitude (cm) Greenwich Epoch
O1 0.92953571 8.91 217
P1 0.99726209 5.32 224
K1 1.00273791 16.12 225
M2 1.93227361 9.97 354
S2 2.00000000 6.45 357

compared with frequency σl. The Fourier coefficients are complex so this comparison might seem
confusing, but we’ll just examine the squared magnitudes of the coefficients: |aj|2.

Of course, if we knew the frequency exactly, we could just do a least-squares fit, but often
we aren’t exactly sure of the frequencies in question—there might be energy spread over a broad
range of frequencies, and the Fourier tranform provides us with a way to examine our data in terms
of oscillatory signals.

