UCSD—SIOC 221A: (Gille) 1

Lecture 7:
Reading: Bendat and Piersol, Ch. 8.5.4

Recap

Last time we took another look at Fourier coefficients to verify that the coefficients that we
assert should represent our data really do work, and in doing so, we defined the Kronecker delta,
0nm- Then we talked about 3 really key concepts for Fourier transforms:

1. First derivatives in the time domain (or the space domain) can be represented in the frequency
(or wavenumber) domain by simple multiplication (e.g. by 27 f).

2. Convolution, which is what we do when we filter data, can be carried out in the frequency
(or wavenumber) domain through simple multiplication. The convolution can be written:

sy = [ety —t)dt, ()

o0

and its Fourier transform is:

X(HY(f) = /_ T pege 2)

o0

3. Parseval’s theorem: Total variance in the time domain equals total variance in the frequency

domain - -
/ 22(t)dt = / G ()P df. 3)

—00 e}

It’s worth noting that if we worked with ¢ = 27 f rather than f, we’d have to normalize by
2m:
= L[~ 2
/ x=(t)dt = 7 | X (0)|* do 4)
—00 — 00

In thinking about the time domain vs the frequency domain, one thing to keep in mind
is the distinction between integrating over all time (on the left in the above equation) and
integrating over all space (on the right). This implies that we’re going to need to keep track
of our frequency inforamtion carefully. In essence the Fourier coefficients in X (e.g. |a,,|?)
do not have the same units as the time domain values in 22, because z is integrated in time
and |a,,| is integrated in frequency. If the total integral of z? is equal to the total integral
of | X |?, then we’re going to need to adjust by factors of f, and this will influence how we
label our axes.

We also considered the terminology for describing spectra as red, white, or blue, and we dis-
cussed how we from a plot we can identify the Nyquist frequency (the highest frequency resolved,
representing one cycle every 2 points, so it tells us the sampling interval) and the duration of the
record (based on the lowest resolved frequency, which is one cycle for the full record.)

Computing spectra

We’ve covered a lot of territory—we can Fourier transform, we know some of the properties
of the Fourier transform, we’ve looked at Parseval’s theorem. Now we need to stop beating around
the bush and produce some spectra of our own.

How do we take our data and produce a meaningful measure of the power per unit frequency?
Here’s a basic approach:

UCSD—SIOC 221A: (Gille) 2

1. First, we know we’re going to need to Fourier transform our data, and plot the squared
amplitudes. We’ll only need to analyze the first N/2 + 1 of the Fourier coefficients, and
we’ll look at the amplitudes of these values. (The second half of the Fourier coefficients are
complex conjugates of the first half of the record and correspond to negative frequencies.)
The frequencies corresponding to the first N/2 + 1 coefficients will run from 0 cycles per N
points to NV/2 cycles per N points. So a first step is to compute:

a=fft (data)

N=length (data) ;

amp=abs (a(l:N/2+1).72; % for even N
amp=abs (a(l: (N+1)/2).72; % for odd N

2. Second, since we’re only taking half the record, we’ve thrown out half the energy in the
original data (except at frequency 0), so we’ll need to put that back in.
amp (2:end-1)=2xamp (2:end-1); % for even N
amp (2:end)=2%amp (2:end); % for odd N

3. Having gotten this far, we’d better check that Parseval’s theorem is working for us. We’ll
need to see that the energy in the initial record matches the energy in the Fourier transform.
If we don’t worry about units, then in Matlab we just need to divide by /N to make our
normalization work.

amp=amp/N;

If we want to make this make sense for the temporal and spatial sampling of our observations
we might need to scale our results to reflect real time and frequency units. (Fortunately
multiplicative scalings won’t influence the shape of our spectra, so we can always delay
sorting out the details.)

4. We can plot what we have. Typically we use a loglog axis (or at least semilogy). We’ll need
to compute our frequencies thoughtfully. So for example if we have measurements every
361 seconds, then we might want to convert to cycles per hour by scaling the frequency
appropriately.

scale = 1/361 x 3600; % to convert from 1 cycle/2 pts to 0.5 cycles
% per 361 s to 0.5 cycles x= 3600/361 /hr

frequency=(0:N/2) /N * scale; % for N even

frequency=(0:N/2-1) /N » scale; % for N odd

loglog (frequency, amp)

5. Now, we have a problem in that our results are way too noisy. We’ll have a hard time
distinguishing signal from peak. So clearly we’re going to need more realizations. To do
this, one common practice is chop our data into multiple segments. As a first step, we can
just cut the data into M segments of N/M points each. For example, here’s a brute strenght
approach:

UCSD—SIOC 221A: (Gille) 3

N=length (data); M=6; p=N/M;

data=reshape (data,N/M,M); % this gives us an array with N/M points
% per column and M columns

b=fft (data) ; % this computes the fft for each column

amp_b=abs (b (l:p/2+1,:))."2; amp_b (2:p/2,:)=2+amp_b(2:p/2,:)/p;

loglog (frequency,mean (amp_b, 2))

Here you can debate whether you should be plotting the sum (to conserve energy) or the
average (to represent a mean spectrum for a data set of length p. In most cases you’ll want
the average.

Now the critical question? How many degrees of freedom does this record have? Is this M to
represent M segments? Maybe you can think of it that way, but by convention, we get one degree
of freedom for the real part and one for the imaginary part, so 2 per segment. We’ll need this to
compute error bars, but let’s start by noting that our error bars are not the same as the standard
error of the mean. We’re computing the sum of M squared quantities, and that’s going to depend
on something that looks like a x? distribution.

When we compute spectra from segments, clearly there are tradeoffs: if I have /N data points
total, I can have lots of segments with few points in each segment, or few segments with more
points per segment. The Nyquist frequency will be the same whatever I choose, since that’s de-
termined by the interval between observations. But the low-frequency limit will differ, as will the
increment between frequencies (which is determined by the lowest resolved frequency). There’s no
rule for how to handle this, and your decisions will depend whether you want small uncertainties
or high resolution in frequency space.

Spectral Uncertainties

The problem with all of the spectra that we’ve computed so far (the amplitude of the Fourier
Transform) is that we have not yet identified how to evaluate the uncertainty. By eye we can
see that the spectra are fairly noisy. We know from computing means that the error of the mean
decreases as we average more quantities together.

How do we incorporate more data into our spectra? You might imagine that you could im-
prove your spectrum by extending the input time series from N to 2N data points for example.
Unfortunately, although adding data points will change your spectrum, it won’t reduce your noise
or make the spectrum more precise at any individual frequency. Instead it will increase the number
of frequencies for which you obtain results from N/2 to N.

Error bars for spectra rely on a similar principle. Our uncertainties in our spectra decrease as
we average more spectra together. The challenge is to figure out how to obtain more spectra that
can be averaged together. Typically what we do is to break our time series into segments, compute
spectra for each of the segments, and average these to get a mean spectrum. Then we can rely on
the fact that uncertainties in spectra are distributed like y? to estimate the uncertainties.

If the unknown true spectrum is X (f) and our estimate of the spectrum is X (), then we can
consider the ratio X (f)/X (f), where we use N = 1/2 data segments. Formally, the probability
that the estimated spectrum should be close in value to the true spectrum is:

P(Xz,lfa/Q < VX(f)/X(f) < Xi,a/Q) =l-« &)

so if we want to find a 95% significance level, we set a to 0.05.
This error formulation differs from the usual error bars that we’re used to seeing where we
say for example that the true temperature should be This error formulation differs from the usual

UCSD—SIOC 221A: (Gille) 4

error bars that we’re used to seeing where we say for example that the true temperature should be
the measured temperature plus or minus an uncertainty: 7' = T + 67. We can develop a similar
expression for the true spectrum: X (f) is in the range between v.X (f/ xia /o and vX(f)/ X3,1—a /2>
where v is twice the number of segments. This expression isn’t very easy to interpret, since it varies
as a function of frequency, and the estimated value X (f) is not at the mid-point of the range.

Instead we’ll make use of the ratio X (f)/X (f) which does not depend on frequency. On a
log plot, error bars defined by the range between v/ X?j’a /o and v / X121,1—o< /o are the same size at all
frequencies, so we can easily compare spectral peaks at different frequencies.

Some statistics books include look-up tables for y2, but we can compute it directly in Matlab.
For N/2 data segments, the error limits are:

err_low = N/chi2inv(.05/2,N);
err_high = N/chi2inv (1-.05/2,N);

We can plot these values as:
semilogy ([f f], [err_low err_high]x*A);

where we set the frequency f and the amplitude A, so that the error bar ends up positioned in a
convenient spot on the plot.

Now to have N/2 data segments, we have to split our long data record into shorter segments.
We can do this by taking M data points at a time:

N=length (data) ;
M=segment_length; % define this value
for n=1l:floor (N/M)

d=data ((n-1)*M+1:n*M); %$select data for the nth segment
fd(:,n)=fft (d); % compute fft
end

sd=sum (abs (fd(1:M/2+1,:))."2,2)/N; % sum over all spectra
% (sum over 2nd index)

S

sd(2:end)=sd(2:end) *2;
nu=2xfloor (N/M) ;
err low = nu/chi2inv (.05/2,nu);

err_high = nu/chi2inv(1-.05/2,nu);

semilogy (0:M/2,sd, [M/4 M/4], [err_low err_high]*sd(M/4))

