
UCSD—SIOC 221A: (Gille) 1

Lecture 17:

Recap
We’ve now spent some time looking closely at coherence and how to assign uncertainties to

coherence. Can we think about coherence in a different way?
There are a couple more things we want to do. First, we finished up last time with a quick

look at a variance-preserving spectrum, and we want to understand how to make sense of that. And
then, let’s
Variance preserving spectra

One of the virtues of the properly normalized spectrum is that the area under the curve should
represent the signal variance within a specific frequency band:

variance in a band =

∫ f+∆f/2

f−∆f/2

|X(f)|2 df (1)

This sounds good as a concept, but in log-log space, it’s challenging to figure out what the area
under the curve really represents. Variance-preserving spectra provide a visual representation for
this. Consider a spectrum Sxx(f) derived from our Fourier amplitudes X(f). In log space, the
area under our curves is a pseudo-variance s2

∗:

s2
∗ =

∫ f+∆f/2

f−∆f/2

log(Sxx(f)) df (2)

If we want to plot something that is more directly representative of variance, we can try this:

s2 =

∫ f+∆f/2

f−∆f/2

Sxx(f) df =

∫ f+∆f/2

f−∆f/2

fSxx(f)d[log(f)] (3)

This means that instead of plotting logS vs log(f), we could plot fSxx(f) in linear space vs f in
log space. This is especially useful for features that have strong peaks not exactly at the lowest
frequency.

Here’s an example, using the red noise that we started with earlier:

bb=reshape(b,500,10000/500);
fbb=fft(detrend(bb));
amp=abs(fbb(1:251,:)).ˆ2 / 500;
sbb=mean(amp,2);
sbb(2:250)=sbb(2:250)*2;

subplot(2,1,1)
loglog(0:250,sbb,’LineWidth’,3)
xlabel(’Frequency’,’FontSize’,14)
ylabel(’(unitsˆ2)/frequency’,’FontSize’,14)

subplot(2,1,2)
semilogx(0:250,(0:250)’.*sbb,’LineWidth’,3)
xlabel(’Frequency’,’FontSize’,14)
ylabel(’(unitsˆ2)’,’FontSize’,14)

UCSD—SIOC 221A: (Gille) 2

Multi-tapers and spectral peaks
Spectra can come in two flavors. Some have distinct single peaks, associated with tides. Some

have large-scale structure associated with the general red structure of the ocean. If we want to find
exactly the right peaks, then we can try different strategies to what we use when we want to find
the general structure.

When we have narrow peaks, they aren’t always easy to differentiate, particularly if our sam-
pling is a bit coarse compared with the signals we’d like to detect. Consider the following case of
a sinusoidal cycle that might or might not be well sampled, depending how long our instruments
survive:

time=1:.5:120;
A=2*cos(2*pi*time/30)+cos(2*pi*time/60);
B=A(1:200);
C=[A(1:200) zeros(1,40)];

plot(time,A,time(1:200),B,’LineWidth’,3)
set(gca,’FontSize’,16)
xlabel(’time’,’FontSize’,16)
ylabel(’amplitude’,’FontSize’,16)

fA=fft(A);
fB=fft(B);
fC=fft(C);

frequency1=(0:120)/120;
frequency2=(0:100)/100;

loglog(frequency1,abs(fA(1:121)).ˆ2,frequency2,abs(fB(1:101)).ˆ2,...
frequency1,abs(fC(1:121)).ˆ2,’LineWidth’,3)

set(gca,’FontSize’,16)
xlabel(’frequency’,’FontSize’,16)
ylabel(’spectral density’,’FontSize’,16)
legend(’full record’,’truncated record’,’zero padding’)

When you look at this example, you might conclude that without perfect sampling of full sinu-
soidal cycles, we’ll never find the correct spectral peaks. In essence this is a windowing problem.
When we have narrow peaks, they aren’t always easy to differentiate, particularly if our sampling
is a bit coarse compared with the signals we’d like to detect. See the slides for an example (from
Rob Pinkel.)

If we don’t have adequate resolution what are our options?

1. Possibility 1. Pad the short record with zeros to make it as long as we want. Since resolution
is f = 1/(N∆t). In this case, we’ll see the impact of a sinc function bleeding into the
frequencies that we’d like to resolve. Clearly this doesn’t fully solve our problem.

2. Possibility 2. Obtain a longer record. This will be critical if we really want to resolve our
signal.

UCSD—SIOC 221A: (Gille) 3

Even if our record is norminally long enough, we also need to figure out how to optimize our
detection of spectral peaks. Earlier we looked at the impact of windows, and examples from the
Harris (1978) study showed how much impact a good windowing strategy can have in identifying
spectral peaks. (For continuous spectra, windowing approaches work well.)

Formally, you’ll recall that we can represent our record length problems using a convolution
of our data with a finite width filter:

X̂(fn) =

∫ ∞

−∞
X(fm)W (fn − fm) dfm, (4)

where

W (f) =
sin(2πfT)

2πfT
= sinc (2πfT) (5)

This means that the spectrum is essentially convolved with W (2πfT)2. But as we noted earlier,
we can switch from a boxcar window to a triangle window or something a bit more Gaussian than
that and cut down on the sidelobes in our window to obtain a cleaner spectrum, although we have
to widen the central peak of the window in the frequency domain, which means de-emphaizing the
beginning and end of the data series.

What if we want to improve our resolution. Consider Rob Pinkel’s example of a record
equivalent to

x = 100 cos(2π20.5/10001)+80 cos(2π30.4/100001)+100 cos(2π40.8/100001)+10 cos(2π50.3/100001)
(6)

The quality of our spectral estimate will depend on the length of our record. (Why is that? The
resolution is the lowest resolved frequency.) So what can we do to improve resolution. One strategy
would be to pad our record with zeros to make it as long we want. That buys us something, but it
gives us plenty of spectral ringing.

If we want to optimize resolution, we can try a multitaper approach. (See for example Ghil et
al, Reviews of Geophysics, 2001). In a multitaper approach, we replace our single window with
a set of tapers. The tapers are designed to minimize spectral leakage, and they are referred to
as “discrete prolate spheroidal sequences” or “Slepian” tapers (after Slepian, who studied them).
Tapers are what we’ve been calling windows—they pre-multiply the data, Fourier transforms are
computed, and then the spectrum is computed as a weighted sum of all of the squared Fourier
transforms. This effectively averages over an ensemble of windows to minimize variance. This
is very effective for extracting narrow peaks that would otherwise be undetectable. Matlab has a
multi-taper method package (‘pmtm’), but if you really want this to work, you probably want to
dig into the guts of the algorithm a bit further.

Here’s the Matlab example, modified slightly to make a longer record:

fs = 1000; % Sampling frequency
t = (0:3*fs)/fs; % One second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies

xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
pmtm(xn,4,[],fs)

This produces an impressive two spectral peaks. Of course this example isn’t too tricky. Here’s
what we get if we take the same data and split them into 6 non-overlapping segments, even with
no windowing or detrending:

UCSD—SIOC 221A: (Gille) 4

fa=fft(reshape(xn(1:3000),500,6));
semilogy(mean(abs(fa(1:250,:)’).ˆ2))

These are reassuringly similar results.

Decibels and Powers of 10
Decibels (“db”, not to be confused with decibars) quantify power or variance. We often focus

on orders of magnitude. But power in decibels is on a log10 scale, with a factor of ten normalization.

Pdb = 10log10(P/P0), (7)

where P0 is a reference level of power: Variance is a squared quantity so

P/P0 P relative to P0 (db)
1000 30

10 10
2 3

0.5 -3
0.1 -10

Pdb = 20log10(V/V0). (8)

By convention dB is used for sound pressure and db for everything else.

Transfer function:
We discussed the fact that coherence is analogous to a correlation coefficient. It tells us if two
things vary in tandem in a consistent way, but it doesn’t tell us how big they are or how to use
one variable to approximate a second variable. If we want to look at relative sizes, or if we want
to approximate a variable y based on its relationship with x, in the time domain we think about
finding a regression coefficient. We’re used to solving a least-squares fitting equation of the form

y = Ax (9)

with a solution of the form
x = (ATA)−1ATx (10)

For illustration we can simplify this to a case where the matrix A has only column, that is where
we regress y′ (with the prime telling us that the mean has been removed, since we don’t want to
complicate our least-squares fit) against just one variable, making A a column vector (e.g. z′). In
this case x becomes a scalar and the matrix inverse (ATA)−1 is just the reciprocal of the variance
of z′.

x =
〈y′z′〉
〈z′2〉

. (11)

Compare this with the correlation coefficient of the demeaned variables

r =
〈y′z′〉√
〈y′2〉〈z′2〉

. (12)

UCSD—SIOC 221A: (Gille) 5

Viewed in this way, the correlation coefficient r and the regression coefficient x (another term for
the least-squares fit with only one variable) look nearly the same, aside from the normalization.
Both the correlation coefficient and the regression coefficient convey useful information. And that
might make you think that in the Fourier-transform domain there should be a form analogous to
regression.

The term for the Fourier domain analog to regression is the transfer function:

Ĥxy(f) =
Ĝxy(f)

Ĝxx(f)
, (13)

which provides a (complex-numbered) recipe for mapping from x to y.
Formally, we talk about the transfer function when we think about constructing a linear sys-

tem:
L(y(t)) = x(t) (14)

If L is a linear operator, then we could think of this relationship as a convolution:

yt =

∫ ∞

−∞
h(u)x(t− u) du (15)

or if we Fourier transform, this would state:

Y (f) = H(f)X(f). (16)

Salinity spiking examples
In class I showed some examples of ‘salinity spiking’, which results from the temperature and

conductivity sensors having different response times. If we assume that simultaneous measure-
ments represent the same water sample, when in reality they don’t, we end up computing:

S = S(T (t), C(t− ∆t)). (17)

If temperature and salinity are constant, this doesn’t pose a problem, but when T or C change
abruptly, this can lead to very odd results. How can we use the transfer function (or coherence)
approach to examine this (even if we don’t know the actual response characteristics of the sensor)?

Appendix: More detail on variance of cross-spectra
If we have two degrees of freedom, the cross spectrum is

|ĜXY (f)|2 = Ĝ∗
XY ĜXY (18)

= |X∗(f)Y (f)|2 (19)
= X(f)Y ∗(f)X∗(f)Y (f) (20)

So trying all combinations to get the sum of the 4-term product:

〈|ĜXY (f)|2〉 = 〈XX∗〉〈Y Y ∗〉 + 〈XY ∗〉〈X∗Y 〉 + 〈XY 〉〈X∗Y ∗〉 (21)
= GXXGY Y + |GXY |2 (22)

where G here is the total cross-spectrum. The variance is then

var[ĜXY] = 〈|ĜXY (f)|2〉 − |ĜXY (f)|2 (23)
= GXXGY Y (24)

=
|GXY |2

γ2
xy

(25)

UCSD—SIOC 221A: (Gille) 6

where γxy is the coherence.
With more degrees of freedom, error scales with the square root of the number of samples,

just like the standard error:

varGXX =
G2

xx

nd

(26)

varGY Y =
G2

Y Y

nd

(27)

varGXY =
|GXY |2

γ2
xynd

(28)

This scaling gives us the uncertainty for the coherence and phase after some manipulation. (See
Bendat and Piersol, Ch. 9 for details.)

This means that the normalized uncertainty of GXY is

ε[|ĜXY |] =
std[GXY]

GXY

=
1

|γxy|
√

nd

(29)

Using cross covariance to derive cross-spectra
Finally, you might be thinking that if we could use the auto-covariance to derive the spectrum,

we should also be able to use the cross-covariance between two different variables to compute the
cross-spectrum. Bendat and Piersol are helpful on this topic (see section 5.2).

Here’s a test Matlab code to see how this works:

% define two random data sets with some shared information
a=randn(10000,1);
b=a+randn(10000,1);

% compute autocovariance and cross-covariance
cab=xcov(a,b);
caa=xcov(a,a);
cbb=xcov(b,b);

% Fourier transform
fcab=fft(cab(10000-500:10501));
fcaa=fft(caa(10000-500:10501));
fcbb=fft(cbb(10000-500:10501));

% compute coherence and plot
coher=abs(fcab(1:501)).ˆ2 ./abs(fcaa(1:501)) ./abs(fcbb(1:501));
semilogx(0:500,coher)

% for comparison do same procedure with segments (here
% non-overlapping, non-windowed, quick and dirty)
% Fourier transform
faa2=fft(reshape(a,1000,10));
fbb2=fft(reshape(b,1000,10));

UCSD—SIOC 221A: (Gille) 7

% compute spectra and cross spectrum
saa=mean(abs(faa2(1:500,:)).ˆ2,2);
sbb=mean(abs(fbb2(1:500,:)).ˆ2,2);
sab=mean(faa2(1:500,:).*conj(fbb2(1:500,:)),2);

% plot on top of other
hold on
semilogy(0:499,abs(sab).ˆ2 ./(saa.*sbb))

