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Lecture 18:
Reading: Bendat and Piersol, Ch. 6.1

Recap
Last time we looked at variance preserving spectra, zero padding and multi-taper methods,

definitions of decibels, and finally transfer functions. Now we want to work through transfer
functions more carefully, and then wrap up some final details for the course.

Transfer functions (or gain functions): a proper example
As we noted last time, if we want to look at relative sizes, we can look at the transfer function

(also known as the gain function):

Ĥxy(f) =
Ĝxy(f)

Ĝxx(f)
, (1)

which provides a (complex-numbered) recipe for mapping from x to y. Then, if

yt =

∫ ∞

−∞
h(u)x(t− u) du, (2)

the Fourier transform is:
Y (f) = H(f)X(f). (3)

Consider it this way. Suppose

x(t) =
d2y

dt2
+ α

dy

dt
+ βy (4)

Then by Fourier transforming, we have:

X(f) = −f 2Y (f) + iαfY (f) + βY (f) (5)
= Y (f)

[
β − f 2 + iαf

]
(6)

so
Y (f) =

1

[β − f 2 + iαf ]
X(f) (7)

and
H(f) =

1

[β − f 2 + iαf ]
(8)

This is a nice framework for solving differential equations, but can we use it to gain insights
into our data as well? First some rules:

1. Linearity: If a given linear system has an input x1(t) which corresponds to an output y1(t),
and input x2(t) corresponds to output y2(t)m then a summed input x(t) = αx1(t) + βx2(t),
will produce an output y(t) = αy1(t) + βy2(t).

2. Time invariance: If an input is delayed in time by τ , then the output is as well: If x(t) →
x(t + τ), then y(t) → y(t + τ).

3. Causality: If h(t) represents an impulse, then it should be zero for t < 0. A response cannot
occur before the forcing.
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4. Sequential application: If the output of one linear system is an input to a second system, then
the frequency response is

H12(f) = H1(f) ·H2(f) (9)

So suppose we measure y(t) and x(t). Can we determine h or H? We know that

Y (f) = H(f)X(f) (10)

Let’s multiply both sides of the equation by the complex conjugate of X to form the cross-
spectrum:

Y (f)X∗(f)

T
= H(f)

X(f)X∗(f)

T
(11)

This becomes
Gxy(f) = H(f)Gxx(f) (12)

so

H(f) =
Gxy(f)

Gxx(f)
(13)

Salinity spiking examples
As a teaser, last time I showed some figures for the ‘salinity spiking’ problem, due to the

different response times of temperature and conductivity sensors:

S = S(T (t), C(t−∆t)). (14)

Our challenge now is to use the transfer (or gain) function to assess the salinity spiking, and maybe
even to correct it. Conductivity is strongly dependent on temperature, and we have to remove
the temperature effect to determine salinity. But the faster response times of conductivity sensors
relative to temperature sensors are a source of confusion. Here’s a basic procedure.

1. Identify a segment of the water column in which temperature and conductivity should be
well behaved, with fluctuations due to temperature only. (This isn’t essential, but it will give
us a good shot at unraveling the sensor response time issues that lead to salinity or density
spiking.) We’ll identify the true values as T and C, and the measured values as T̂ and Ĉ.

2. Collect a lot of profiles of data.

3. Now treat this as a linear system:

T̂ (k) = HT (k)T (k) (15)
Ĉ(k) = HC(k)T (k) (16)

(17)

Here HT (k) is the spatial/frequency response of the temperature sensor, and HC(k) is the
spatial/frequency response of the conductivity sensor. The use of T (k) in the conductivity
equation might seem a little crazy, but it’s really important, since we’re asserting that salinity
is unimportant in our (hypothetical) study region.
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4. Compute cross spectra:

ĜTT (k) =
〈T̂ ∗(k)T̂ (k)〉

N∆t
(18)

ĜCC(k) =
〈Ĉ∗(k)Ĉ(k)〉

N∆t
(19)

ĜTC(k) =
〈T̂ ∗(k)Ĉ(k)〉

N∆t
(20)

(21)

Then if we substitute in the expessions linking the observed values to the true values we
obtain:

〈T̂ ∗(k)Ĉ(k)〉
N∆t

=
〈(HT (k)T (k))∗HC(k)T (k)〉

N∆t
(22)

= [H∗
T (k)HC(k)]

〈T ∗(k)T (k)〉
N∆t

(23)

ĜTC(k) = [H∗
T (k)HC(k)]GTT (k) (24)

The same applies for the temperature spectrum:

ĜTT (k) =
〈T̂ ∗(k)T̂ (k)〉

N∆t
(25)

= [H∗
T (k)HT (k)]GTT (k) (26)

So the ratio of these becomes:

ĜTC(k)

ĜTT (k)
=

H∗
T (k)HC(k)

|HT |2
=

HC(k)

HT (k)
(27)

This means that even without knowing the response function H , we can compute the ratio
of the response functions from the transfer function, the ratio of the cross-spectrum to the
spectrum.

An analogous relationship also holds:

ĜTC(k)

ĜCC(k)
=

H∗
T (k)HC(k)

|HC |2
=

HT (k)

HC(k)
(28)

5. Now use this information to correct the conductivity sensor to have the same response as

the temperature sensor. Here we’ll define our corrected conductivity as ˆ̂
C(k), and we want

to understand its relationship with the observed temperature T̂ (k) and the true temperature
T (k).

ˆ̂
C(k) = αT̂ (k) = αHT (k)T (k) (29)

This means we need a correction of the form:

ˆ̂
C(k) = Ĉ(k) · P (k) = αT̂ (k), (30)
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and our task is to figure out P (k). We can also write:

Ĉ(k) · P (k) = HC(k)T (k)P (k) (31)

so putting this together:
αHT (k)T (k) = HC(k)T (k)P (k) (32)

Thus

P (k) =
αHT (k)

HC(k)
= α

ĜTC(k)

ĜCC(k)
(33)

where α is real. So we do a bit of curve fitting to optimize our correction.

A typical correction might allow for errors both in the response time and a direct time lag:

τ
dT̂ (t)

dt
+ T̂ (t) = T (t− L) (34)

(from Giles and McDougall, Deep-Sea Research, 1986) and this suggests corrections both in the
frequency and time domain, either by minimizing phase differences or by maximizing correlation.
We can Fourier transform this to find:

− i2πfτF(T̂ ) + F(T̂ ) = F(T )e−i2πfL, (35)

implying that
(1− i2πfτ)ei2πfLF(T̂ ) = F(T ). (36)

Since conductivity has the fast response, one strategy is to treat Ĉ as behaving like the true tem-
perature T . So hypothetically:

T̂ (k) = HT (k)T (k) =
1

(1− i2πfτ)ei2πfL
T (k) (37)

Ĉ(k) = HC(k)T (k) = T (k) (38)
(39)

implying a correction P(k) of the form:

P (k) =
αHT (k)

HC(k)
= α

1

(1− i2πfτ)ei2πfL
. (40)

Noise and coherence
Finally, let’s take a quick look at what noise does to coherence and to the transfer function.

Suppose we start with two related signals:

y(t) = c1x(t) + n(t), (41)

where n(t) is noise. Can we determine c1 and n(t) using the cross-spectrum? Formally, the cross
spectrum is:

SXY (f) =
〈X∗(f)Y (f)〉

T
(42)

=
c1〈X∗(f)X(f)〉+ 〈X∗(f)N(f)〉

T
(43)

= c1SXX (44)



UCSD—SIOC 221A: (Gille) 5

The squared coherence is of course:

Coh(f)2 = γ2
XY =

|SXY |2

SXXSY Y

(45)

So what is SY Y ? We can compute the spectrum of y:

SY Y =
[c2

1〈X∗X〉+ c1(〈X∗N〉+ 〈XN∗〉+ 〈N∗N〉]
T

(46)

= c2
1SXX + SNN , (47)

where X and N are assumed to be uncorrelated. Then the squared coherence is:

γ2
XY (f) =

c2
1SXX(f)2

SXX(c2
1SXX + SNN)

(48)

=
1(

1 + SNN (f)

c21SXX(f)

) (49)

The final term in the denominator is a measure of the noise-to-signal ratio. (In our example, we
imposed it from the beginning.) So if we knew a lot about the causal relations between our records,
we could use the coherence to extract a measure of the noise-to-signal ratio.

Noise and the transfer function
Now let’s introduce noise in the Fourier transform domain, which perhaps implies a slightly

more complicated relationship between x and y:

Y (f) = X(f)H(f) + N(f) (50)

If we multiply through by X∗:

〈X∗Y 〉 = 〈X∗X〉H(f) + 〈X∗N〉 (51)

Since the signal is uncorrelated with noise, this still gives us

H(f) =
Gxy(f)

Gxx(f)
, (52)

so noise appears to have no impact on the results, but is it all so rosy?
Alternatively, we might imagine that our forcing x is noisy, so that

Y (f) = [X(f) + N(f)] H(f) (53)

In doing this, we assume that the noise associated with X is uncorrelated with the signal Y —in
other words, we assume that the response y(t) should be responding to x(t), but we’ve mismea-
sured the forcing as x(t) + n(t). Then:

〈(X + N)∗Y 〉 = 〈(X + N)∗(X + N)〉H(f) (54)

And since y and n are uncorrelated in this formulation,

Ĥ(f) =
Gxy(f)

Gxx(f) + Gnn(f)
, (55)
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which is biased low relative to the true response. (But the phase is unbiased.) This is analogous to
the noise-related formulation that we looked at for coherence.

Putting it all together
In this course, we’ve looked at a broad range of strategies for analyzing time series. Can we

make some decisions about how we might plan an experiment and analyze our data?
Let’s consider a central problem of physical oceanography. Can we evaluate the ocean re-

sponse to wind:

∂u

∂t
+ u · ∇u− fv = −1

ρ

∂p

∂x
+

1

ρ

∂τx

∂z
(56)

∂v

∂t
+ v · ∇u + fu = −1

ρ

∂p

∂y
+

1

ρ

∂τ y

∂z
(57)

Suppose we cross out a few terms. What do we need to measure to evaluate whether we’ve crossed
out the right terms? Can we show that one of these is a reasonable approximation?

∂u

∂t
=

1

ρ

∂τx

∂z
(58)

−fv =
1

ρ

∂τx

∂z
(59)

−fv +−1

ρ

∂p

∂x
=

1

ρ

∂τx

∂z
(60)

(61)

Methods we’ve explored in this class include:

1. Basic statistics: means, standard deviation, variance, standard error

2. Probability density function

3. Least-squares fitting

4. One-dimensional spectra (with windowing and uncertainties)

5. Two-dimensional spectra

6. Monte Carlo methods for evaluating confidence limits

7. Coherence

Intangibles
Besides the formal topics for which you’ve done problem sets, this class has aimed to start you

thinking more like a data analyst. This has thrown you into the thorny world of real data problems,
and I’m immensely grateful to you for your persistence. Some life lessons from this class:

1. In science, we favor evidence-based decision making over shoot-from-the-hip opinons. Data
analysis gives you a set of tools for this.

2. Your good judgement matters in deciding how to approach a data analysis problem. You
should always ask yourself how your understanding of the physics can inform your approach.
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3. Even the rigors of the peer review process cannot guarantee the fidelity of published sources
of information. Be skeptical and inquisitive.

4. You have the tools at your disposal to address your skepticism. Fake data and Monte Carlo
methods are always an option.

5. Many questions have not been answered carefully, and there is room for you to make sig-
nificant contributions. (I think the pier station staff are still looking for the perfect means to
validate the methodology used for the pier samples.)

6. Just because something appears to be significant at the 95% level doesn’t guarantee that it is
a robust signal.

7. If your results are wildly dependent on the details of your methodology, that might mean
that paying attention to methodology matters, but it also could be a warning sign that you’re
trying to identify a signal that is more wishful thinking than real signal.

8. The methods that we apply to real data can be exactly analogous to problems that we’ve
done in this class, or they can be surprisingly divergent.


