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Lecture 4:

Recap

Key concepts from last time focused on the standard error of the mean and its links to error

propagation, the chi-squared and Rayleigh distributions, and methods for telling whether one pdf

is statistically like another (the Komogorov-Smirnov test and the chi-squared test).

You’ll recall that the Rayleigh distribution represents the square root of two independent

Gaussian components, y =
√

x2
1 + x2

2.
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y

σ2
exp

[

−
y2

2σ2

]

. (1)

And the χ2 distribution represents the sum of n squared variables:

χ2

n
= z2
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+ z2

2
+ z2

3
+ ... + z2

n
. (2)

The slides showed examples of these, and we noted that the χ2 distribution has a mathematical

formulation in terms of the Γ function. I glossed over the definition of the Γ function, because it’s

not very mathematically tractable, and is normally handled via a look-up table.

We also looked at two possible tests for telling if two pdfs differ. One was the Kolmogorov-

Smirnov test. (If you have one data set, and want to know whether it is plausibly Gaussian, put all

the data in a vector x, and in Matlab use

kstest(x)

. if the output is zero, you stick to the null hypothesis that the data are Gaussian; if the output is

1, you reject that hypothesis at the 5% significance level and thus surmise that perhaps the data

weren’t Gaussian. So for example, if we want to test if a vector of Gaussian noise has a Gaussian

distribution, we could type:

kstest(randn(10000,1))

which produces 0. For a non-Gaussian (uniform distribution) of random numbers

kstest(rand(10000,1))

produces 1, implying that the input vector is not Gaussian.

If we’re comparing two data sets, we can make two vectors (e.g. x and y), and use

kstest2(x,y)

. Again, an output of 0 says plausible the two records come from the same “true” distribution;

output of 1 says that at the 5% significance level, you can reject the null hypothesis that x and y
come from the same general source. Compare these two cases:

kstest(randn(10000,1),randn(10000,1))

kstest(randn(10000,1),rand(10000,1))
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The second was a χ2 test, in which you bin your data into histograms and ask if the number

of data you find in each bin is consistent.

A second strategy is to bin the data and ask whether the number of data in the bin is consistent

with what we’d expect, using a χ2 statistics. In this case for comparisons with a theoretical pdf,

χ2 =
∑

i

(Ni − ni)
2

ni

, (3)

where Ni is the observed number of events in bin i, and ni is the theoretical or expected number of

events in bin i. For comparisons between two distributions,

χ2 =
∑

i

(Ni − Mi)
2

Ni + Mi

, (4)

where Ni and Mi are each observed numbers of events for bin i. The values of χ2 are evaluated

using the χ2 probability function Q(χ2|ν), which is an incomplete gamma function, where ν is the

number of bins (or the number of bins minus one, depending on normalization). In Matlab this is

gammainc(chi_squared/2,nu/2)

or equivalently

chi2cdf(chi_squared,nu)

To test this out, you can produce a few sets of binned random data. (Be sure to use the same

bins for each record.)

[a1,a2]=hist(randn(100000,1),-6:.5:6);

[b1,b2]=hist(randn(100000,1),-6:.5:6);

[c1,c2]=hist(rand(1000000,1)-.5,-6:.5:6);

The tests produce the following:

chi2=sum((b1-a1).ˆ2 ./(b1+a1))

chi2cdf(chi2,25)

gammainc(chi2/2,25/2)

chi2=sum((c1-a1).ˆ2 ./(c1+a1))

chi2cdf(chi2,25)

gammainc(chi2/2,25/2)

Fitting a function to data: least-squares fitting

Now, let’s return to our time series. You might remember we were looking for a linear trend

for:

T = To + bt + n, (5)

where T represents our measured temperature data (as a vector), To is a constant (unknown), t

is time, and b is the time rate of change (also unknown), and since this is the real world, n is

noise (representing the part of the signal that isn’t a linear trend. Formally, provided that we have

more than two measurements, aside from the unknown noise vector, this is an over-determined

system. Since the noise is unknown, and there are lots of independent values, the system is formally
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underdetermined. But we won’t lose hope. We just move forward under the assumption that the

noise is small.

Last time we started writing this as a matrix equation:

Ax + n = y, (6)

where
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










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, (7)

making A an N × 2 matrix. And y is an N -element column vector containing, for example, our

temperature data:

y =
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




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. (8)

Then x is the vector of unknown coefficients, in this case with 2 elements (e.g. x1 = To and

x2 = b).

x =

[

x1

x2

]

(9)

How can we find the best solution to this equation to minimize the misfit between the data y

and the model Ax? The misfit could be positive or negative, and absolute values aren’t mathemat-

ically tractable, so let’s start by squaring the misfit.

ǫ = (Ax − y)T (Ax − y) = xTATAx − 2xTATy + yTy. (10)

Then we can minimize the squared misfit. The natural route to minimization comes by taking the

derivative, and then setting the results equal to zero. Our unknown is x, so we’ll minimize in terms

of that:
∂ǫ

∂x
= 2ATAx − 2ATy = 0, (11)

and this implies that

ATAx = ATy, (12)

so

x = (ATA)−1ATy. (13)

In Matlab, you’d code this as follows:

% assuming time matches the SST standard with days counting from

% January 1, 1800

% and data is the monthly sea surface temperature

plot(time+datenum(1800,1,1),data,’LineWidth’,2); hold on

A=[ones(length(time),1) time(:)];

x=inv(A’*A)*A’*data;

plot(time+datenum(1800,1,1),A*x,’r’,’LineWidth’,2)
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As we’ve noted, if we want to find a trend, we define A to have a column of ones (to identify

the mean) and a column containing the time, to identify the rate of change. We can make our model

A progressively more complicated by adding additional columns. What do we do if we want to

find the annual cycle? Before I give you any answers, take a moment to think about this.

We could use:

A =





1 cos(tr) sin(tr)
...

...
...



 , (14)

where time t is measured in days, and tr = 2πt/365.25, is the time in radians. We need the sine

and cosine because we don’t know the phase of our annual cycle exactly. You might imagine

that we could fit for the phase (e.g. sin(tr + φ)), and we could, but that would be a non-linear

fitting process, and the power of least-squares fitting won’t work if we try that—we’d quickly be

plunged into the murky world of non-linear fitting procedures, which is messy, unreliable, and not

necessary in this case.

Here’s an example

% continuing from previous example....

A2=[ones(length(time),1) time(:) sin(2*pi*time/365.25) ...

cos(2*pi*time/365.25)];

x2=inv(A2’*A2)*A2’*data;

plot(time+datenum(1800,1,1),A2*x2,’m’,’LineWidth’,2)

Orthogonality and Least-Squares Fits

Let’s think about one important detail of our fitting procedure. What would happen if we

wanted to fit T = x1 + x2tr + x3tr, that is to fit two constants to the same variable? In this

case, clearly x2 and x3 are completely indistinguishable. What happens when we try to use our

redundant functions in our matrix A?

A =










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1 t1 t1
1 t2 t2
...

...
...

1 tN tN













. (15)

Then we find:

ATA =







N
∑
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∑
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∑
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∑
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i
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 . (16)

The second and third rows of ATA are identical, which tells us that the third row is adding no

additional information to the system. As a result, the matrix ATA is singular, and we won’t be

able to find an inverse for it. (In Matlab, when you try to do the inversion, you’ll see a message,

“Warning: Matrix is singular to working precision.”)

You probably wouldn’t try to fit coefficients to two identical functions, but you might do

something that was fairly similar. For example, T = x2tr + x3 sin(tr) poses a similar problem

when tr is near zero. In this case, the rows of ATA might not be identical, but they might be

nearly the same so that Matlab would give you an error message.

Similarly, you’ll have trouble if you try: T = x1 + x2tr + x3(1 + tr).
None of this was an issue when we used sine and cosine, because they are orthogonal, so they

contain no redundant information.
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Building complexity: multiple oscillatory signals

Now let’s think about the pressure record from the Scripps pier, because we know that had a

lot of sinusoidal variability. What might we include in that fit? We might hypothesize that data

collected on the pier could be influenced by an annual cycle (1 cycle/365.25 days), a diurnal cycle

(1 cycle/24 hours), and a tidal cycle (1 cycle/0.5175 days = 1 cycle/(12 hours + 25.2 minutes)).

How would we fit for all of these components?

Questions about pier data

Here are some questions (yours plus some stray questions):

1. How do temperature and salinity vary seasonally, annually, interannually, and on decadal

time scales? What accuracies do we need to assess these modes of variability?

2. How have changes in the location of the pier influenced the long-term record? What is the

stability of the instrumentation? Do error bars evolve over time?

3. Does the pier create noise/flow distortion?

4. How well do the manual and automated records match?

5. Who quality controls the data, and how?

6. Is there visibility data?

7. Which of the variables associated with the pier record are measured directly, and which are

inferred?

8. What methods have been used to collect measurements on the pier, and how consistent are

they?

9. What variables are collected? What is the formal uncertainty? What is the sampling fre-

quency?

10. When did automated sampling start? When did automated sampling start being reliable?

11. What are purposes of automated vs manual systems?

12. What level of adjustment is applied to make manual and automated data match?

13. What has been published about these data?

14. How often are the sensors serviced?

15. What accounts for gaps in the data?

16. How hands on is the automated system? What’s really automatized?

17. What depths are the sensors?

18. Where are the sensors?

19. Are multiple sensors used are merged?
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20. What is the local geographic variability?

21. What is the time of day of measurement? How clearly is that documented?

22. What does instrument failure look like in the data records?

23. What error flags are available for the data?

24. How long are records?

25. How is equipment calibrated? And how often?


