
UCSD—SIOC 221A: (Gille) 1

Lecture 5:
Reading: Bendat and Piersol, Ch. 4.5.1, 11.1, 11.2

Recap
Last time we looked at least-squares fitting. We derived the formula for a least-squares fit and

showed that we could find a linear trend and a sinusoidal variation. We set up the least squares
problem and looked at sinusoidal fits, and we finished up by asking what would happen if we fit
multiple sinusoidal signals at once. That’s where we’ll start today.

Least-squares fits and misfit
You’ll recall that last time we considered a least-squares fit of the form

Ax + n = y. (1)

The misfit is defined as a squared quantity so should follow the χ2 statistic. (Yet another use of
χ2.) If I believe my a priori uncertainties in my data are σ, then I expect that my misfit should
roughly match my uncertainty so I can define a weighted summed misfit:

χ2 =
N∑

i=1

(
yi −

∑M
j=1 ai,jxj

σi

)2

. (2)

Here we’re summing the squared misfit of each row in our matrix equation, weighted by our
uncertainty. If our error bars make sense, then this should yield about N , reduced by the number
of functions were fitting. So we expect that χ2 will be about N − M , which is the number of
degrees of freedom. Formally we can decide if our fit is too good to be true by evaluating χ2 using
the incomplete gamma function, to find where the observed χ2 falls within the expected pdf of a
chi2 distribution:

p=gammainc(chi_squared/2,nu/2,’upper’)

If p is smaller than 0.05 or greater than 0.95, then our observed value is outside the range expected
for 90% of observed χ2 values. If p is near 1, it can tell us that our fit is too good to be true.
Likewise, if p is too small, it can tell us that our fit isn’t properly representing the data—either the
model is wrong, or the a priori error bars are too large.

Alternatively, we can solve for upper and lower threshold χ2 values: if χ2 > χ2
upper, then we

reject the hypothesis at the α level. And if χ2 < χ2
lower we also know we’re out of range. So

chi2_upper = gammaincinv(0.05,nu/2,’upper’)*2.
chi2_lower = gammaincinv(0.05,nu/2,’lower’)*2.

What happens in the limit when we fit N data points with N columns in matrix A? The matrix
A is an N ×N square matrix, and we are solving for as many unknowns in x as we had data in y.
In this case, if χ2 is zero, p will be 1, warning us that we’re over-fitting our data. What happens to
our noise n? By using N orthogonal functions, we obtain a perfect fit and the noise is zero. That’s
convenient, but it loses any information that we might have had about uncertainties in our data. If
we made noisy measurements, we might not have any reason to expect a perfect fit, but we’ll have
one anyway.

Multiple oscillatory signals

UCSD—SIOC 221A: (Gille) 2

You might wonder if you’ll bias your results by fitting for all of the sinusoidal variability all at
once. Usually, the answer is no. Assuming that your time series is long enough, sinusoidal frequen-
cies are orthogonal to each other: there is no correlation between sin(2πt/T) and sin(2π2t/T), just
as there is no correlation between the sine and cosine components.

So we can take this to the maximum limit. Suppose we just want to fit sines and cosines to
our data. How many frequencies can we fit? If I’m going to do this, then I’ll need to make sure
that each row of my matrix equation is linearly independent, which means that I’ll want to make
sure that each column of A is orthogonal, so I can’t choose frequencies that are too closely spaced.

Least-Squares Fitting Sines and Cosines
Least-squares fitting is particularly tidy when the functions that we use for our fit, the columns

of our matrix A, are completely orthogonal, because then the fit to one function has no impact on
the fit to the other functions.

Consider the special case where the columns of A are made up of sines and cosines, so

A =

[
1 cos(ωt) sin(ωt) cos(2ωt) sin(2ωt) · · ·
...

...
...

...
...

]
, (3)

where ω = 2π/T and T is the total duration of the data record. The dot product of any two columns
i and j of A is zero if i 6= j. If I have data at N evenly spaced time increments, t1, t2, ...tN , then
this orthogonality property holds for all frequencies from ω through Nω/2. Since I have a sine and
cosine at each frequency (up to frequency Nω/2 where sine might be zero at all points in time),
this means that I can define a total of N independent orthogonal columns in A.

On the other hand, if I define a column of A to have a frequency ω/2, it won’t be orthogonal
to my other functions over the range of this data. For example, between 0 and T , sin(ω/2) varies
from 0 to 1 to 0 and is always positive, meaning that it will be positively correlated with a constant.
In fact, sines and cosines with frequencies that are ω multiplied by integers rangings from 0 to N/2
make a complete set that spans all space, and there are no additional N -element vectors that I can
add to A that would also be orthogonal to all other columns of A.

The orthogonality of the columns of A is really important. It means that my solution for x1

is completely independent of my solution for x2. Here are some results for a set of 128 random
numbers, b.

b̂ = −0.0629− 0.0620 cos(ωt)− 0.1339 sin(ωt) (4)
b̂ = −0.0629− 0.0960 cos(2ωt) + 0.1117 sin(2ωt) (5)
b̂ = −0.0629− 0.0620 cos(ωt)− 0.1339 sin(ωt)− 0.0960 cos(2ωt) + 0.1117 sin(2ωt), (6)

where b̂ is our fitted approximation to b. You can see that the amplitudes of cos(ωt) and cos(2ωt)
are the same regardless of whether A contains 3 columns or 5 columns.

If we take a time series of N elements, then the lowest frequency that we can resolve is 1
cycle per N elements, so cos(2πi/N), where our counter i runs from 1 to N (or from 0 to N − 1).
We can find two coefficients for this: one for the cos component and one for the sin component.

Actually, maybe a better way to think about this is that the lowest frequency we can resolve
is cos(0i/N) = 1, which is a constant and represents the mean. Since sin(0) = 0, there is only a
cosine component for frequency 0.

At any rate, after considering 1 cycle per N points, the next frequency we can resolve that
will actually be fully orthogonal is 2 cycles per N points. We can keep counter upward: 3 cycles

UCSD—SIOC 221A: (Gille) 3

per N points, 4 cycles per N points, and so forth. All of these are guaranteed to be orthogonal over
our domain of N points.

What is the maximum number of cycles that we can resolve in N points? One possibility
would be that the maximum is N cycles per N points. That would require a full sinusoidal oscil-
lation squeezed between data element 1 and data element 2. But if you think about it, we wouldn’t
expect to have enough information to determine the amplitude of a sine wave that had to squeeze
itself between consecutive observations. Moreover if N cycles per N points were the maximum,
this would mean that we’d be solving for 2N coefficients with only N data points. Clearly that
would require more information than we have available.

So the maximum must be less than N . There are two ways to think about this. One way is to
think about the information content of our data. At the most basic level, if I have N elements in my
data matrix, then at best, I can hope to have N independent equations, so I can fit N coefficients
as an exactly determined problem. So I can solve for frequencies from 0 cycles per N points to
N/2 cycles per N points, with 2 coefficients for all but the end members of my record. The other
way to think of this is to observe that you’ll need at least 2 data points per cycle to determine
even a minimum amount of information about the sine or cosine amplitudes of your data. So the
highest frequency that you can possibly detect of N/2 cycles per N data points. This is the Nyquist
frequency and it is one of the most central concepts in time series analysis.

And the strategy of least-squares fitting all possible frequencies that can be resolved represents
the discrete Fourier transform. It’s a slow and inefficient Fourier transform, but it is the essence of
this class and it will be the building block for everything we do in the remainder of the quarter.

Orthogonality and Sines and Cosines
Last time we talked about the importance of having independent columns in our matrix A and

noted that sines and cosines are particularly useful since they are orthogonal. Let’s work through
this a little more carefully.

Consider a record of duration T with N data points. I can imagine squeezing into the period
T , one sine wave, or two, or three, or four. How do I tell if my records are orthogonal?∫ T

0

sin

(
2πnt

T

)
sin

(
2πmt

T

)
dt =

1

2

∫ T

0

cos

(
2π(n−m)t

T

)
− cos

(
2π(n + m)t

T

)
dt

=
1

2

T

2π

sin
(

2π(n−m)t
T

)
n−m

−
sin
(

2π(n+m)t
T

)
(n + m)

∣∣∣∣∣∣
T

0

=

{
0, if n 6= m
T
2
, if n = m

(What matters is that this is only non-zero in the special case when n = m. For the moment, the
fact that the integral yields T/2 when n = m is a minor detail.) By extension the same applies for
two cosines, or a sine multiplied by a cosine.

This means that I can set up a matrix of sines and cosines, in which every column will be
orthogonal to every other column.

A =

[
1 cos(ωt) sin(ωt) cos(2ωt) sin(2ωt) · · ·
...

...
...

...
...

]
, (7)

where ω = 2π/T and T is the total duration of the data record. The dot product of any two columns
i and j of A is zero if i 6= j. If I have data at N evenly spaced time increments, t1, t2, ...tN , then

UCSD—SIOC 221A: (Gille) 4

this orthogonality property holds for all frequencies from ω through Nω/2. Since I have a sine and
cosine at each frequency (up to frequency Nω/2 where sine might be zero at all points in time),
this means that I can define a total of N independent orthogonal columns in A.

What happens if we want to fit the frequency ω/2? In this case, it won’t be orthogonal to my
other functions over the range of this data. For example, between 0 and T , sin(ω/2) varies from
0 to 1 to 0 and is always positive, meaning that it will be positively correlated with a constant. In
fact, sines and cosines with frequencies that are ω multiplied by integers rangings from 0 to N/2
make a complete set that spans all space, and there are no additional N -element vectors that I can
add to A that would also be orthogonal to all other columns of A.

The orthogonality of the columns of A is really important. It means that my solution for x1

is completely independent of my solution for x2. Here are some results for a set of 128 random
numbers, b.

b̂ = −0.0629− 0.0620 cos(ωt)− 0.1339 sin(ωt) (8)
b̂ = −0.0629− 0.0960 cos(2ωt) + 0.1117 sin(2ωt) (9)
b̂ = −0.0629− 0.0620 cos(ωt)− 0.1339 sin(ωt)− 0.0960 cos(2ωt) + 0.1117 sin(2ωt),(10)

where b̂ is our fitted approximation to b. You can see that the amplitudes of cos(ωt) and cos(2ωt)
are the same regardless of whether A contains 3 columns or 5 columns.

If we take a time series of N elements, then the lowest frequency that we can resolve is 1
cycle per N elements, so cos(2πi/N), where our counter i runs from 1 to N (or from 0 to N − 1).
We can find two coefficients for this: one for the cos component and one for the sin component.

Actually, maybe a better way to think about this is that the lowest frequency we can resolve
is cos(0i/N) = 1, which is a constant and represents the mean. Since sin(0) = 0, there is only a
cosine component for frequency 0.

At any rate, after considering 1 cycle per N points, the next frequency we can resolve that
will actually be fully orthogonal is 2 cycles per N points. We can keep counter upward: 3 cycles
per N points, 4 cycles per N points, and so forth. All of these are guaranteed to be orthogonal over
our domain of N points.

What is the maximum number of cycles that we can resolve in N points? One possibility
would be that the maximum is N cycles per N points. That would require a full sinusoidal oscil-
lation squeezed between data element 1 and data element 2. But if you think about it, we wouldn’t
expect to have enough information to determine the amplitude of a sine wave that had to squeeze
itself between consecutive observations. Moreover if N cycles per N points were the maximum,
this would mean that we’d be solving for 2N coefficients with only N data points. Clearly that
would require more information than we have available.

So the maximum must be less than N . There are two ways to think about this. One way is to
think about the information content of our data. At the most basic level, if I have N elements in my
data matrix, then at best, I can hope to have N independent equations, so I can fit N coefficients
as an exactly determined problem. So I can solve for frequencies from 0 cycles per N points to
N/2 cycles per N points, with 2 coefficients for all but the end members of my record. The other
way to think of this is to observe that you’ll need at least 2 data points per cycle to determine
even a minimum amount of information about the sine or cosine amplitudes of your data. So the
highest frequency that you can possibly detect of N/2 cycles per N data points. This is the Nyquist
frequency and it is one of the most central concepts in time series analysis.

And the strategy of least-squares fitting all possible frequencies that can be resolved represents
the discrete Fourier transform. It’s a slow and inefficient Fourier transform, but it is the essence of
this class and it will be the building block for everything we do in the remainder of the quarter.

UCSD—SIOC 221A: (Gille) 5

The Fourier Transform
So our least-squares fit of N data to N sinusoids was clearly too good to be true, but we’re

not doing fitting here, so we’re going to proceed along this line of reasoning anyway. Our goal is
to rerepresent all of the information in our data by projecting our data onto a different basis set.
In this case we’ll take the projection, warts and all, and we want to make sure we don’t lose any
information.

So we want to represent our data via sines and cosines:

x(t) =
a0

2
+

∞∑
q=1

(aq cos(2πqf1t) + bq sin(2πqf1t)) , (11)

where fq = 1/Tp, and Tp is the duration of the record (following Bendat and Piersol). Formally
we should assume that the data are periodic over the period Tp. We find the coefficients a and b by
projecting our data onto the appropriate sines and cosines:

aq =
1

Tp

∫ Tp

0

x(t) cos(2πqf1t) dt (12)

and

bq =
1

Tp

∫ Tp

0

x(t) sin(2πqf1t) dt (13)

solved for q = 0, 1, 2,
It’s not much fun to drag around these cosines and sines, so it’s useful to recall that

cos θ =
exp(iθ) + exp(−iθ)

2
(14)

sin θ =
exp(iθ)− exp(−iθ)

2i
, (15)

which means that we could redo this in terms of eiθ and e−iθ. In other words, we can represent our
data as:

x(t) =
∞∑

q=−∞

[âq exp(i2πqf1t)] =
∞∑

q=−∞

[âq exp(iσqt)] (16)

where σq = 2πq/T , and âq represents a complex Fourier coefficient. If we solved for our coeffi-
cients for cosine and sine, then we can easily convert them to find the complex coefficients âq for
exp(iσqt) and exp(−iσqt). Consider :

a cos θ + b sin θ =
a

2
(eiθ + e−iθ) +

b

2i
(eiθ − e−iθ) (17)

=
a− ib

2
eiθ +

a + ib

2
e−iθ. (18)

This tells us some important things. The coefficients for eiθ and eiθ are complex conjugates. And
there’s a simple relationship between the sine and cosine coefficients and the e±iθ coefficients. In-
stead of computing

∑N
j=1 aj cos(ωjt) and

∑N
j=1 bj sin(ωjt), we can instead find

∑N
j=1 âj exp(iωjt)

and then use the real and imaginary parts to represent the cosine and sine components. This gives
us a quick shorthand for representing our results as sines and cosines.

