
UCSD—SIOC 221A: (Gille) 1

Lecture 7:
Reading: Bendat and Piersol, Ch. 8.5.4, Ch. 5.2.3

Recap
Last time we looked at the Fourier transform, which lets us re-represent data in the time (or

space) domain in terms of coefficients of sines and cosines. We looked at notation, and we talked
about 3 really key concepts for Fourier transforms:

1. First derivatives in the time domain (or the space domain) can be represented in the frequency
(or wavenumber) domain by simple multiplication (e.g. by i2πf).

2. Convolution, which is what we do when we filter data, can be carried out in the frequency
(or wavenumber) domain through simple multiplication. The convolution can be written:

x ∗ y(τ) =

∫ ∞

−∞
x(t)y(τ − t) dt, (1)

and its Fourier transform is:

X(f)Y (f) =

∫ ∞

−∞
x ∗ ye−i2πft dt. (2)

3. Parseval’s theorem: Total variance in the time domain equals total variance in the frequency
domain ∫ ∞

−∞
x2(t)dt =

∫ ∞

−∞
|X(f)|2 df. (3)

More on the formalism of the Fourier transform
Now we can use this to verify that our Fourier coefficients are consistent. If I have a data set

x(t) that can be expressed as

x(t) =
∞∑

n=−∞

an exp(i2πfnt) (4)

and

am =
1

T

∫ T/2

−T/2

x(t) exp(−i2πfmt) dt (5)

then let’s check that our coefficients work out. We can substitute in x(t) to obtain

am =
1

T

∫ T/2

−T/2

∞∑
n=−∞

an exp(i2πfnt) exp(−i2πfmt) dt (6)

=
1

T

∫ T/2

−T/2

∞∑
n=−∞

an exp(i2π(fn − fm)t) dt (7)

=
∞∑

n=−∞

an

T

∫ T/2

−T/2

∞∑
n=−∞

exp(i(fn − fm)t) dt. (8)

When n = m, the integral goes to T , and the summed expression becomes an. When n 6= m,
we’re dealing with orthogonal cosines and sines, and the integral goes to zero. Thus the net result

UCSD—SIOC 221A: (Gille) 2

is that

am =
∞∑

n=−∞

anδnm (9)

= am (10)

where δnm is called the Kronecker delta function, with δnm = 1 if n = m and δnm = 0 otherwise.
(Formally in continuous form the δ function can be thought of as a distribution, like a pdf, that
has shrunk to be infinitely high and infinitesimally narrow, so that the area under the distribution is
exactly 1.)

3. Parseval’s theorem: Total variance in the time domain equals total variance in the frequency
domain

Parsval’s theorem provides a critical link between total energy in the time domain and total
energy in the Fourier transform domain.

3.1 Parseval’s theorem via convolution. Let’s start with the convolution of a data record with
itself:

y(t) =

∫ ∞

−∞
x(τ)x(t − τ)dτ. (11)

What happens if I convolve my data (x(t)) with the time reversal of itself (x(−t))?

y(t) =

∫ ∞

−∞
x(τ)x(t + τ)dτ. (12)

More conventionally we might write:

y(∆t) =

∫ ∞

−∞
x(t)x(∆t + t)dt. (13)

So we’re looking at the data multiplied by itself for a time lag ∆t. At zero lag, this is the variance,
and as we vary ∆t we’re looking at the lagged covariance for different time lags.

What about the Fourier transform? The Fourier transform of a convolution is simply the
product of the Fourier transforms of each variable so the Fourier transform of y(∆t) shoud be
X∗X . (We use the complex conjugate of X since we convolved x with its time reversal.) We
could inverse transform this back to produce y(∆t):

y(∆t) =

∫ ∞

−∞
X∗Xei2πf∆t df (14)

Now, focus on the case when ∆t = 0. This implies that

y(0) =

∫ ∞

−∞
x(t)2dt =

∫ ∞

−∞
X∗X df, (15)

which tells us that the total variability in x is equivalent to the total variability in its Fourier trans-
form X .

3.2 Parseval’s theorem from the definition of the Fourier transform. Maybe a clearer way to
understand Parseval’s theorem is to think about the product of two variables, x1 and x2. We can
rewrite the product, substituting the inverse Fourier transform of the Fourier transform of x2(t):

x1(t)x2(t) = x1(t)

∫ ∞

−∞
X2(f)ei2πft df (16)

UCSD—SIOC 221A: (Gille) 3

so we can integrate this in time:∫ ∞

−∞
x1(t)x2(t)dt =

∫ ∞

−∞

[
x1(t)

∫ ∞

−∞
X2(f)ei2πft df

]
dt (17)

=

∫ ∞

−∞
X2(f)

[∫ ∞

−∞
x1(t)e

i2πftdt

]
df (18)

=

∫ ∞

−∞
X1

∗(f)X2(f) df. (19)

(My edition of Bendat and Piersol has a typo in this derivation, which appears just prior to equation
5.83, and this has caused no end of confusion.) Here we use the complex conjugate of the Fourier
transform of x1, because we computed the Fourier transform with e+i2πft instead of the standard
e−i2πft.

Put succinctly, if x1 = x2: ∫ ∞

−∞
x2(t)dt =

∫ ∞

−∞
|X(f)|2 df (20)

This is Parseval’s relationship.
It’s worth noting that if we worked with σ = 2πf rather than f , we’d have to normalize by

2π: ∫ ∞

−∞
x2(t)dt =

1

2π

∫ ∞

−∞
|X(σ)|2 dσ (21)

In thinking about the time domain vs the frequency domain, one thing to keep in mind is the
distinction between integrating over all time (on the left in the above equation) and integrating
over all space (on the right). This implies that we’re going to need to keep track of our frequency
information carefully. In essence the Fourier coefficients in X (e.g. |am|2) do not have the same
units as the time domain values in x2, because x is integrated in time and |am| is integrated in
frequency. If the total integral of x2 is equal to the total integral of |X|2, then we’re going to need
to adjust by factors of δf , and this will influence how we label our axes.

Red, white, and blue spectra
Now let’s look at a few spectra. We use words associated with light to talk about spectra.

Red colors have long wavelengths (e.g. infrared), while blues and purples have short wavelengths
(e.g. ultraviolet). If a spectrum is dominated by low frequencies or long wavelengths, we refer
to it as “red”. If it is dominated by short wavelengths or high frequencies, is is “blue”. If it has
nearly the same energy levels at all frequencies or wavelengths, then it is “white”, like the white
broad-spectrum lights that we use for electric lighting.

Computing spectra
We’ve covered a lot of territory—we can Fourier transform with an fft, we know some of

the properties of the Fourier transform, we’ve looked at Parseval’s theorem. Now we need to stop
beating around the bush and produce some spectra of our own.

How do we take our data and produce a meaningful measure of the power per unit frequency?
Here’s a basic approach:

1. First, we know we’re going to need to Fourier transform our data, and plot the squared
amplitudes. We’ll only need to analyze the first N/2 + 1 of the Fourier coefficients, and

UCSD—SIOC 221A: (Gille) 4

we’ll look at the amplitudes of these values. (The second half of the Fourier coefficients are
complex conjugates of the first half of the record and correspond to negative frequencies.)
The frequencies corresponding to the first N/2 + 1 coefficients will run from 0 cycles per N
points to N/2 cycles per N points. So a first step is to compute:

a=fft(data)
N=length(data);
amp=abs(a(1:N/2+1).ˆ2; % for even N
amp=abs(a(1:(N+1)/2).ˆ2; % for odd N

2. Second, since we’re only taking half the record, we’ve thrown out half the energy in the
original data (except at frequency 0), so we’ll need to put that back in.

amp(2:end-1)=2*amp(2:end-1); % for even N
amp(2:end)=2*amp(2:end); % for odd N

3. Having gotten this far, we’d better check that Parseval’s theorem is working for us. We’ll
need to see that the energy in the initial record matches the energy in the Fourier transform.
If we don’t worry about units, then in Matlab we just need to divide by N to make our
normalization work.

amp=amp/N;

If we want to make this make sense for the temporal and spatial sampling of our observations
we might need to scale our results to reflect real time and frequency units. (Fortunately
multiplicative scalings won’t influence the shape of our spectra, so we can always delay
sorting out the details.)

4. We can plot what we have. Typically we use a loglog axis (or at least semilogy). We’ll need
to compute our frequencies thoughtfully. So for example if we have measurements every
361 seconds, then we might want to convert to cycles per hour by scaling the frequency
appropriately.

scale = 1/361 * 3600; % to convert from 1 cycle/2 pts to 0.5 cycles
% per 361 s to 0.5 cycles * 3600/361 /hr

frequency=(0:N/2)/N * scale; % for N even
frequency=(0:N/2-1)/N * scale; % for N odd
loglog(frequency,amp)

5. Now, we have a problem in that our results are way too noisy. We’ll have a hard time
distinguishing signal from peak. So clearly we’re going to need more realizations. To do
this, one common practice is chop our data into multiple segments. As a first step, we can
just cut the data into M segments of N/M points each. For example, here’s a brute strenght
approach:

N=length(data); M=6; p=N/M;
data=reshape(data,N/M,M); % this gives us an array with N/M points

% per column and M columns
b=fft(data); % this computes the fft for each column
amp_b=abs(b(1:p/2+1,:)).ˆ2; amp_b(2:p/2,:)=2*amp_b(2:p/2,:)/p;
loglog(frequency,mean(amp_b,2))

UCSD—SIOC 221A: (Gille) 5

Here you can debate whether you should be plotting the sum (to conserve energy) or the
average (to represent a mean spectrum for a data set of length p. In most cases you’ll want
the average.

