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Lecture 10:
Reading: Bendat and Piersol, Ch. 5.2.1

Recap

Last time we looked at the sinc function, windowing, and detrending with an eye to reducing
edge effects in our spectra. We’ve got a full recipe, but we stopped at a cliffhanger problem: how
many degrees of freedom do we really have?

We’ll try to sort this out today, along with venturing into Monte Carlo simulation.

Windowing and overlapping segments

So a quick recap. When we filter, we convolve the filter with our data in the time domain,
which is equivalent to multiplying in the frequency domain. When we window, we multiply by a
tapered window in the time domain, which is equivalent to convolving in the frequency domain.

How many degrees of freedom do you have for overlapping windows. Not 2v but close to that.
Bendat and Piersol usefully say that overlapping by 50% will recover about 90% of the stability
lost due to tapering.

The windowed spectra that we’ve discussed as a basic approach in class are referred to by
a number of names in the literature. Some textbooks refer to windowing as “tapering”. And the
formal method is sometimes called the Welch method. Percival and Walden (Spectral Analysis
for Physical Applications, Cambridge University Press, 1993) provide a detailed discussion of this
approach under the name “Welch’s Overlapping Segment Averaging (WOSA)”.

Our overarching concern is that we adhere to Parseval’s theorem. Since the window default
normalization can reduce the variance, this will typically require that we scale up appropriately
to conserve energy/variance (e.g. by \/% for a Hanning window). How do you find this scale
factor? One way is to sum over a wide window. For example:

N=10000;
[sum (hanning (N) ."2) /N 3/8]
[sum (hamming (N) . "2/N 0.3974]

Will the window preserve energy in your system? Not necessarily. You can normalize it appropri-
ately, but windowing can shift the background energy level of your spectrum relative to the spectral
peaks, and you’ll want to keep track pay attention to the possibility of biases resulting from the
windowing procedure.

How many degrees of freedom do we have?

Once you’ve created overlapping, windowed segments, then you’ll need to figure out how
many independent segments you really have. Clearly at a minimum you should have the equivalent
of the number of segments that you would have if you did no overlapping. If you have NV data points
divided into segments that are 2/ wide, then the minimum number of segments is N/(2M).
But with windowing, the end points of each segment are used less than the middle, making the
overlapping segments more independent, so perhaps we have more degrees of freedom. Since the
segments overlap by 50%, we probably can’t treat them as being independent. Bendat and Piersol
usefully say that overlapping by 50% will recover about 90% of the stability lost due to tapering.
How much does the use of overlapping segments modulate the degrees of freedom?

If you look this up in the 2nd edition of Emery and Thomson, you find a nice table (their Table
5.6.4), ostensably lifted from Priestley. Priestley’s results are nicely discussed by Koopmans (The
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Spectral Analysis of Time Series, Academic Press, 1974). Emery and Thomson describe the table
as representing the equivalent degrees of freedom for windowed “block averaged” spectra.

A little further exploration of the literature shows that the values in Emery and Thomson’s
table are incorrectly labeled and actually represent degrees of freedom for spectra determined
by filtering or averaging adjacent frequencies from an initial spectral estimate. If you filter in
frequency, you can increase your degrees of freedom just the way you increase degrees of freedom
by using multiple segments. And you can refine your filtering to reduce spectral ringing effects
by using a carefully constructed filter. While people use the same types of filters for time domain
windowing/tapering and for frequency domain filtering, the effect is not identical. (If we wanted
an identical effect, we’d need to use the Fourier transform of the time domain window to filter in
the frequency domain. You could do that, but it’s not what we usually envision when we talk about
windowing or tapering, and it’s not what Emery and Thomson seem to describe.) What this means
is that the tables of “equivalent degrees of freedom” for the frequency domain don’t actually work
for windowed time domain data.

So at this point we have three options:

1. Abandon windowing and filter in the frequency domain, so that we can take advantage of the
correct estimates of degrees of freedom. This is a possibility, and we’ll get to it, but it seems
like we’re unnecessarily giving up on the windowing approach that we’ve been exploring.

2. Use a brute strength approach—Monte Carlo simulation—to figure out how many degrees
of freedom we have.

3. Find an analytic solution to decide how many degrees of freedom we have.

Monte Carlo simulation: How to avoid the traps imposed by standard statistical assumptions
(and how to fake your way as a statistician through computational inefficiency rather than
clever mathematics)

Most of the time, we estimate spectral error bars using basic statistical assumptions—that
data are normally distributed, that we have enough samples for the central limit theorem to apply,
that statistics are stationary. These assumptions make our statistical models tractable—we end up
with equations we can manipulate, allowing us (or clever statisticians 100 years ago) to derive
simple equations that give us rules for how systems should behave. But what happens when those
assumptions break down? Or what happens when we have little doubts about the validity of the
statistical model. We can always resort to a Monte Carlo process. In Monte Carlo methods, we
throw theory on its head and use an empirical approach to generate many realizations of our data
set, with noise appropriate to our problem.

As an example, consider the problem of determining the standard error of the mean. When
we discussed it in class, we did a quick derivation to show that the standard error of the mean is
o/ VN , where o is the standard deviation and N is the effective degrees of freedom. But what
if I didn’t trust this realization? I could generate a large number of realizations of my data with
noise typical of the real data, compute means for each realization, and look at the statistics of those
values.

So let’s put this to work. Suppose I’'m computing the mean of N = 500 data points. With
one sample, I can compute the mean ;. and standard deviation o, and standard error o/+/500. But
I might wonder if  is really representative. So I can generate an ensemble of fake data, perhaps
100 data sets based on adding Gaussian white noise (or non-Gaussian white noise) to the real data.
Each of these data sets will have a mean y; and a standard deviation ;. And I can look at the
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standard deviation of all of the y; values. I can also look at the pdf of my f;’s and other higher
order statistics. For example:

A=randn (500, 100);

mu=mean (A) ;

sigma_A=std (A) ;

std_A=sigma_A/sqgrt (500);

[std(mu) mean(std_A)] % compare standard deviation of means

¢

% vs standard error

Now we could expand on our example and ask, what if our noise were non-Gaussian or
gappy or had other problems, and we could adjust our Monte Carlo process appropriately. And
importantly, we can use this approach to test windowing strategies, by generating fake data with a
white spectrum (or a known red spectrum), windowing, segmenting, and evaluating the statistics
of the solution—the standard deviation in log space—relative to the formal error bar.

A more analytic approach to degrees of freedom for overlapping segments

If the Monte Carlo approach seems too ad hoc, we can try something else. Percival and
Walden provide a full derivation of the actual degrees of freedom for overlapping segments. They
define the following terms:

N = total length of record
Np = number of blocks
Ns = segment length or block size
n = shift factor or number of points of overlap between segments
h = window, normalized so that A% sums to 1.

They point out that the covariance between adjacent segments determines the adjustment to the
degrees of freedom, and this depends on h.
In this framework, the variance of the spectral estimate is:

Var{ goosay f)} _ NLB J%l (Var{smﬂ }+ —Zcov{ it (F): i ( f)}) ()

where j and £ are indices for separate but overlapping segments. The variance of the jth spectrum
should converge to the canonical spectrum:

var {1 ()} ~ S2(9) @

The covariance depends on the overlap of the tapers or windows:

cov {Sjn+1(f>7 Sknﬂ(f)} ~ Pt ik—jn| 3)
with h; defined to be zero when t is out of range (i.e. ¢ > Ng). This means that:
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Thus for a full record with arbitrary overlap:

N 2Np
- 2
2 (1= ) [ b

This formulation allows for arbitrary levels of overlap, so you could imagine starting a new segment
every data point and having to contend with with lots of complicated covariances between adjacent
segments.

For practical purposes, we typically work with 50% overlap, so n = Ng/2. In this case,
Percival and Walden show that the equation for the effective degrees of freedom simplifies to

2N
v z 5- (7

142 (1 — N%g) ‘Zi\flm htht+Ns/2’

In the limit of large Nz and many samples, it’s relatively straightforward to find an analytic
solution:

14

(6)
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subject to the requirement that the window normalization is:

L
/ Bt dt = 1. ©)
0
Thus for a boxcar filter, h(t) = 1/+/L, and
L/2 L/2 + L/2 1
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Either analytically, or by plugging in normalized discrete window values h;, we can compute

the adjustments to our effective degrees of freedom shown in Table|[l| You’ll see that these values
provide a fairly effective match to the values that you obtained from Monte Carlo simulation.

Window type Equivalent degrees
of freedom (v)

Boxcar 4/3
Triangle 16/9
Hanning 36/19 ~ 1.90
Hamming ~1.80

Table 1: Effective number of degrees of freedom relative to the total number of segments, using
50% overlap. (With no overlap, the equivalent degrees of freedom would be double the number of
segments.)

So what of the other texts? The 2014 edition of Thomson and Emery is as misleading as the
earlier editions. Von Storch and Zwiers, who are usually fairly lucid on data analysis, strongly
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favor filtering in the frequency domain so don’t consider the impact of windowing or tapering in
the time domain. Priestley also focuses largely on spectra computed from the autocovariance and
spectra computed by filtering the periodogram. Their published tables are intended to provide
guidance on the “lag window” (e.g. \(t)) for spectra computed from the autocovariance, and the
“spectral window”, W ( f), which is Fourier transform of the lag window. When A(¢) and W ( f) are
used as a Fourier transform pair, they should have equivalent impacts on the degrees of freedom.

Finally, Percival and Walden note that we can also consider overlaps other than 50%, by
adjusting m in their original equation:

2Np
v Np—1 N 2
T2 (1= ) [ B

Their Figure 293 shows degrees of freedom as a function of overlap for the Hanning window. We
can code this in Matlab to consider other windows as well, as illustrated in Figure mz

(12)

Ns=512;

n=256;
N=Ns+100;
Nb_theory=N/Ns;

h=ones (Ns, 1) /sqrt (Ns) ;
for n=1:Ns-1
Nb=round ( (N-Ns) /n+1) ;
sumh=1[1];

for m=1:Nb-1

i1f (Ns—m*n>=1)

sumh (m) =(1-m/Nb) xabs (sum(h (1:Ns—-m*n) .xh (1+mxn:Ns))) "2;

end
end
denom=1+2+*sum (sumh) ;
nu_boxcar (n)=2xNb/denom;
end

h=sqgrt (2/3/Ns) * (1-cos (2+pi* (1:Ns) /Ns)) ;

for n=1:511
Nb=floor ( (N-Ns) /n+1) ;
sumh=1[];

for m=1:Nb-1

1f (Ns—m#*n>=1)

sumh (m)=(1-m/Nb) rabs (sum(h (1:Ns—-m*n) .xh (1l+m*n:Ns))) " 2;

end
end
denom=1+2+sum (sumh) ;
nu_hanning (n)=2+Nb/denom;
end
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hold off

plot (1-(1:2:Ns-1) /Ns,nu_boxcar (1l:2:end) /Nb_theory,’LineWidth’, 3);

hold on

plot (1-(1:2:Ns-1) /Ns,nu_hanning(l1:2:end) /Nb_theory,’LineWidth’, 3);

set (gca, 'FontSize’,16)

xlabel (' Fractional overlap between segments’,’FontSize’,16)

ylabel ("Effective dof relative to # non-overlapping segments’, ...
"FontSize’,16)

legend (' Boxcar’,”Hanning’)

Filtering in the frequency domain

Last time, when we talked about windowing, we noted that windowing in the time domain is
equivalent to convolution in the frequency domain (and filtering in the time domain is equivalent
to multiplication in the frequency domain.) This could lead you to an interesting conclusion. What
if you skipped all the windowing and just did convolutions (i.e. filtering) in the frequency domain?
In the limit in which you choose the same filter, these options should be the same.

This approach was originally developed by Daniell and is nicely discussed by von Storch and
Zwiers (see their section 12.3.11). Daniell’s original idea was to run a moving average over the
Fourier transform of the full record. In this case the confidence intervals are determined by:

E
P (Xz,l—oz/Q < l/% < XIQ/,oz/2> (13)

where v in this case is 2 x the number of frequencies averaged together.

The advantages of this approach are that it provides an unbiased estimate of the true spectrum.
The width of our averaging forces us to tradeoff bias (minimized if we do less averaging) vs
variance (minimized with more averaging). One virtue of averaging in the frequency domain is that
we can apply different levels of averaging (with different error bars) depending on the frequency.
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Figure 1: Ratio of degrees of freedom v relative to nominal number of segments available if no
overlapping is used for Hanning window and boxcar window.



