UCSD—SIOC 221A: (Gille) 1

Lecture 12: Autocovariance as a Pathway to Spectra
Reading: Bendat and Piersol, Ch. 5.2.1

Recap

We’ve looked at several strategies for computing spectra and estimating degrees of freedom—
segmenting data and computing the periodogram (the Fourier transform) or computing the peri-
odogram (Fourier transform) and then averaging. Now, let’s look at this from a different angle by
considering the covariance.

Using the auto-covariance to think about spectra.
Now let’s look at spectra from a different perspective. First, let’s remind ourselves of the
definition of a convolution: -
2(t) = / x(T)y(t — 7)dr. (1
When we talked about Parseval’s theorem, my notes mentioned that the autocovariance is the
convolution of z(t) with its time reversal, z(—t).

y(r) = /OO x(t)x(r + t)dt. ()
More formally, we might write this autocovariance as R, (7).
Ryp(7) = /OO x(t)z(T + t)dt. 3)
Now, what if we Fourier transform R?
Sea(f) = / N Rep()e ™7 dr. 4)

Formally, this and its inverse transform are the Wiener-Khinchine relations.
Now let’s think about starting with two functions, x(¢) and y(t). We can write their Fourier
transforms:

X(f) = / h x(t)e It qt 5)
Y(f) = / h y(t)e It dt., (6)

So now let’s define X times the complex conjugate of Y. (Why do we consider the complex
conjugate? Because it’'s how we always multiply vectors.) We find the Fourier transform of the
complex conjugate by substituting —: for ¢ everywhere it appears:

v = [wwetar ¢
_ / jo y(—t)e 20 d(—t) (8)
_ /t T y(—tye gy ©)
_ /tw y(—t)e 2T gy, (10)

UCSD—SIOC 221A: (Gille) 2

So

o0

X(HY*(f) = / B(t)e 200 dt, (11

For the moment, we have no idea what k() should be, but we should be able to figure it out. If
X(f)Y*(f) is a product in the frequency domain, then k() should be a convolution in the time
domain: -

k(t) = / z(u)y(u —t) du. (12)
(Remember that we’d normally use ¢ — u for a convolution; but here we reverse the sign to be
consistent with using the complex conjugate Y*(f).) We used a derivation very similar to this in
about Lecture 7, when we wanted to persuade ourselves that Parseval’s theorem would work. But
now we revisit this with a goal of looking closely at this convolved quantity, which represents the
autocovariance. We can plug k(¢) into our equation to check this.

/OO k(t)e 2 tat = /OO {/00 z(u)y(u —t) du} e~ It gt (13)

= / / —z(u)y(u — t)e? T De=2mfu gy — Y du (14)
—o0 Ju—t=00

= / x(u)e 2w {/00 y(u —)™= gy — t)} du (15)

= /OO z(u)e Y () du (16)
= Y*(f) / h x(u)e v dy (17)
= X(NHY"()). (18)

Here we’ve taken advantage of the fact that the integral runs from —oo to +o0o which lets us treat
u — t as a variable that depends only on ¢.
So we can think about what happens when z(t) = y(¢), so that

k(t) = /_OO r(u)x(u —t) du = Ryp(—t). (19)

This means that k() is the autocovariance of x. The autocovariance is symmetric, so we could
also write this as

k(t) = /OO z(u+t)r(u) du = Ryp(t). (20)
Regardless
X (f)? = / k(t)e™2 It dt. (1)

This says that the Fourier transform coefficients squared (what we use when we compute spectra)
are equivalent to the Fourier transform of the autocovariance.

A practical look at the autocovariance
Let’s think about the autocovariance of white noise:

Ron(r) = / T (Ba(r + Dt = {0 for7 70 (22)

oo 1 forr=0

UCSD—SIOC 221A: (Gille) 3

This is true, because white noise is uncorrelated except at zero lag.
Alternatively, if I consider red noise, then the noise will be correlated from point to point, and
the autocovariance will have a bit of spread. We can test this out:

¢

% define red data with autoregressive process
a=randn (10000, 1) ;
b(l)=a(l);
for i=2:1length (a)
b(i)=b(i-1)+a(i);
end

BB=xcorr (b, b) /max (xcorr (b,b));
BB_unbiased=xcorr (b, b, ’unbiased’) /max (xcorr (b, b, "unbiased’));
plot (-=999:999, [BB’ BB_unbiased’],’LineWidth’, 3)

Biased vs unbiased estimators.

Notice that we could consider both the ‘biased’” and the “unbiased” estimator. There are argu-
ments for either choice. The difference depends on how we normalize our discrete autocovariance.
In the unbiased case, we’re computing

N—m
1
R(T)unbiased = N —m ; x(tn>x(tn+m) (23)
In the biased case, we change how we normalize:
| N
R(T)biased = N nzjl $(tn)x(tn+m)> (24)

which means that as the number of values we consider becomes smaller, we constrain the magni-
tude of the autocovariance by continuing to divide by N. Emery and Thomson note that the biased
estimator acts like a triangle window. For spectra, you will want to stick to the unbiased estimator,
and then choose your own window carefully.

Practical implementation: Spectra from auto-covariance

Using the auto-covariance to compute spectra requires averaging, just as we did by segment-
ing our data and using the fft, but there’s one tidy little trick. Let’s use some white noise again, and
take a look at our options:

1. Suppose we start with a big matrix of white noise, and we compute the autocovariance for
each column of our matrix, then Fourier transform, and use these to compute a spectrum.
We’ll end up doing something along these lines:

A=randn (1000, 100);

for i=1:100

AcA(:,1)=xcov(A(:,1i),A(:,1), " unbiased’); % autocovariance for
end

fAcA=fft (AcA(500:1500,:)); % Fourier transform of autocovariance

UCSD—SIOC 221A: (Gille) 4

frequency=(0:500) /1000;

loglog (frequency, 2*xabs (mean (fAcA(1:501,:),2)), " LineWidth’, 3)
set (gca, 'FontSize’,16)

xlabel (' Frequency (cycles per data point)’,’FontSize’,16)
ylabel (' Spectral energy’,’FontSize’,16)

As with the standard Welch method for spectral estimation (which we can properly refer to
as a “periodogram”), we’re only plotting half the spectrum, so we need double the energy.

2. Alternatively, we could average all of the autocovariances, and then Fourier transform:

mean_AcA=mean (AcA, 2);
fmean AcA=fft (mean_AcA (500:1500));
hold on
loglog (frequency, 2+xabs (fmean_AcA(1:501,:))*1.1,’r",’ LineWidth’, 3)
legend (' average of FFTs of many autocovariances’, ...
"FFT of averaged autocovariance (scaled by 1.1)")

3. For comparison, the peridogram-based determined from the fft of the data:

fA=fft (A);
ampA=abs (fA(1:501,:)).72/1000; ampA(2:500, :)=2+ampA (2:500, :);
loglog (frequency,mean (ampA, 2) ,’ LineWidth’, 3)

4. Finally, you might skip all segmenting and just compute the autocovariance of the full record:

N=length (a);

aca=xcov (a,a, "unbiased’);
faca=fft (aca (N-500:N+500)) ;

loglog (frequency, 2xabs (faca(1:501)),’LinewWidth’, 3)

In the results, shown in Figure |1} the curves (for options 1 and 2) are identical, though the red
line has been scaled up by 10% to make both visible. There are some normalizations here that we
haven’t properly confronted. (Notably, if our frequency had units, we’d need to scale by T'/N, or
include a At.) Details can be sorted out later, and Thomson and Emery provide a bit of guidance
on this.

You shouldn’t be surprised that averaging before or after the FFT leads to the same results,
since averaging has no impact on the FFT. This might give you ideas of how you can take advantage
of the autocovariance to compute spectra from gappy data. Importantly, we can compute spectra
without needing to chunk our data and compute lots of ffts, provided that we had a good estimate
of the autocovariance.

The best estimate of the autocovariance should have the most averaging, and you can maxi-
mize your averages by using the longest possible records (option 4 above). Suppose you have 1000
data points, and two possible ways to analyze the data.

e If you split the record into 10 segments of 100 points, the zero-lag autocovariance will be
an average of 1000 points, which is great, but the lag 100 autocovariance will represent an
average of only 10 points, which is not so great.

UCSD—SIOC 221A: (Gille) 5

e In contrast, if you don’t split the record, the zero-lag autocovariance will still be an average
of 1000 points, while the lag 100 auto-covariance will be an average of 900 points, on the
whole a lot more averaging.

In the days before the development of the FFT, the autocovariance was a natural pathway
to determining the spectrum, since it was clean and easy to compute. And now, with modern
computing, you might not feel like there’s any need to take advantage of the FFT anymore. If you
can obtain the best possible estimate of the autocovariance, by whatever means necessary, then
you should be able to compute one FFT and obtain reasonable estimate of the spectrum, without
concern for data gaps or computational speed.

Formally if you compute spectra from the autocovariance, you need to think about averaging
just as thoroughly as you do for segmented windowed data (through the Welch method) or for
frequency-averaged spectra (the Daniell method). In this case, the challenge comes in deciding
what fraction of the autocovariance to actually Fourier transform. If you use the autocovariance
over the entire data range, your autocovariance estimator has too much uncertainty at the large
lags, and the resulting spectrum will have large uncertainties.

When we use the autocovariance to compute spectra, we’ll want to omit the poorly sampled
edges of the spectrum. There are a number of ways to do this. We have to decide what fraction
of the autocovariance to use. For example I could take half, or a quarter. What difference does
it make? In essence, the fraction that I use determines the amount of averaging that I do, and
therefore defines the number of degrees of freedom. In the simplest form, we use a boxcar window
to extract values:

N=length(b); % number of data points
M=N/4; half width of points to use
fBB=fft (BB (N-M+1:N+M)) ; % since the fft assumes the record to

o

% be circular, remove one point at the end

o\

loglog (0:M-1,abs (£fBB(1:M)))

The degrees of freedom are determined by the width of the window. If I have /V data points, and I
use M of them in the Fourier transform, then I’'m implicitly averaging N/M independent samples,
which gives me N/M degrees of freedom. I can compute an error bar based on this in exactly the
way that we did earlier for the periodogram approach:

hold on
nu=N/M;
err_high=nu/chi2inv (.05/2,nu);
err_low=nu/chi2inv (1-.05/2,nu);

loglog ([10 10], [err_high err_ low],’LineWidth’, 3)

Now you might decide that a boxcar windowed view of the autocovariance is likely to have
unfortunate characteristics in the Fourier domain, in which case you could use a different window
instead: a triangle window (also called a Bartlett window), or a Hanning window, or a Hamming
window. For example:

fBB_t=fft (BB (N-M:N+M) .«triang (2«M+1)");

UCSD—SIOC 221A: (Gille) 6

fBB_h=fft (BB (N-M:N+M) . xhanning (2«M+1) ") ;

loglog (0:M-1,abs (fBB_t (1:M)))
loglog (0:M-1,abs (fBB_h(1:M)))

In this case we adjust the error bars to account for the windowing of the autocovariance. As it turns
out, the table (5.5 in Thomson and Emery, 2014) that was so misleading for overlapping segmented
data is exactly what we need here:

Window type Equivalent degrees

of freedom (v)
Truncated peridogram (boxcar) N/M
Bartlett (triangle) 3N/M
Daniell (sinc) 2N/M
Parzen 3.708614N/M
Hanning 8/3N/M
Hamming 2.5164N/M

This works well when M is small compared with N and when the autocovariance is compar-
atively narrow. In other words, for white noise, this converges nicely; for a broad red noise peak,
the autocovariance tends to have negative lobes, making the choice of M difficult and the results
not amenable to interpretation. The challenge in dealing with the truncation of the autocovariance
is perhaps the reason that although this approach is often presented in equations (in idealized cases
with infinite data), it is less frequently implemented for real applications.

Side bar: Autocovariance in discrete form.
Last time we went through the representation of the autocovariance using an integral form.
Let’s rewrite this in terms of the discrete Fourier transform. In this case, the mean of our data is:

e i0
(x) = o7 /Tx(t)e dt = ay. (25)
and the variance is .
1
(24 7) = —/ 2 ()2 (t) dt — |ag? (26)
or |,

We use the complex conjugate here, just in case x(t) is represented as a complex number, since
this will give us the sum of the squares. Notice that we’ve remembered to subtract out the mean
(our frequency zero Fourier coefficient).

In similar notation, we can write the covariance (for finite record length 27") as:

T
R(7) = % /T o*(H)x(t + 1) dt — |agl* (27)

UCSD—SIOC 221A: (Gille) 7

This lets us write out an expression for the variance 2 in terms of the discrete Fourier coefficients:

1 [T & . > .

R(r) = T . [Z afle_’%f"t Z ameZQ”fm(t+T)] dt — |ao|? (28)
© X , 1 [T

= nz_:oo mz;oo azame“%f"”ﬁ / i ! 2m 2w fm)t gt | |2 (29)

=) lam/? e — Jag)? (30)

where we used a Kronecker delta (6,,,,,) to eliminate the integral with e2™(~»+/m)t except when n =
m, and we subtracted a? at the end to match our original definition. In setting this up, recall (from
lecture 5) that the Fourier transform uses e **™/*, and the inverse transform uses e™**™/*. We’re
using the inverse transform here (though the signs reversed when we had the complex conjugate.
This tells us that the Fourier transform of the autocovariance can be expressed by the squared
Fourier coefficients. (So we could avoid the Fourier transform completely and just work with the
auto-covariance.)
In this form, Parseval’s theorem simply says that

T
R(0) = % 7Tx*(t)x(t+0)dt—|ao|2 (31
= D lawl* —aof? (32)

meaning that the variance of « is the sum of magnitudes of the Fourier coefficients.

UCSD—SIOC 221A: (Gille) 8

!]
15F - average of FFTs of many autocovariances 3]

140 —FFT of averaged autocovariance (scaled by 1.1) |

131

iy
N
T

—
-
T

Spectral energy

o
©
T

o
©
T

107 1072 107 10°
Frequency (cycles per data point)

Figure 1: Spectra for white noise, computed by Fourier transforming 100 realizations of the autoco-
variance function (blue), or by Fourier transforming a smoothed autocovariance function computed
from 100 realizations of the data (red). The red line is scaled upward by a factor of 1.1.

