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Lecture 3:
Reading: Bendat and Piersol, Ch. 3.1-3.4, Ch. 4

Friday: field trip, meet at pier

Recap
In lecture 2, we talked about some probability density functions, the fact that we often assume

Gaussianity, and that often geophysical variables aren’t really Gaussian. We also noted that if we
know the mean and standard deviation for a set of variables, then we determine the mean and
standard deviation for a summed variable.

We noted that one of the clever aspects of the pdf is that we can use it to determine an expected
value:

E(x(k)) =
∫ ∞
−∞

xp(x) dx = µx. (1)

We can also use this for x2 or for (x− µx)2.

E((x(k)− µk)2) =
∫ ∞
−∞

(x− µx)2p(x) dx = σ2
x. (2)

We can actually keep going to determine higher moments of the pdf. Moments of the pdf are
traditionally identified by µn, where n represents the order of the moment:

µn =
∫ ∞
−∞/

(x− µx)np(x) dx. (3)

The third moment, normalized by the standard deviation cubed is called skewness, and the fourth
moment is kurtosis.

skewness =
µ3

σ3
(4)

kurtosis =
µ4

σ4
(5)

Skewness measures the lobsidedness of the pdf; for a symmetric distribution, such as a Gaussian,
skewness should be zero. Kurtosis provides a measure of the peakiness of the pdf; for a Gaussian,
the kurtosis is 3. Because the kurtosis of a Gaussian is so well defined, people sometimes plot
excess kurtosis, which is kurtosis minus three.

Error propagation
The lecture 2 notes finished with a discussion of the standard deviation of summed variables:

If x(k) =
∑N

i=1 aixi(k), then the mean of x is

µx = E(x(k)) = E

[
N∑
i=1

aixi(k)

]
=

[
N∑
i=1

aiE(xi(k))

]
=

N∑
i=1

aiµi. (6)

and

σ2
x = E

[
(x(k)− µx)2

]
= E

[
N∑
i=1

ai(xi(k)− µi)

]2
=

N∑
i=1

a2iσ
2
i . (7)

And we noted that the standard error of the mean is σ/
√
N .
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The standard error of the variance is σ2
√

2/(N − 1).
The results for the standard error of the mean led to one of the basic rules that we use to

determine uncertainties for summed quantities. This is usually referred to as error propagation.
If we sum a variety of measures together, then the overall uncertainty will be determined by the
square root of the sum of the squares:

δy =

√√√√ N∑
i=1

a2i δ
2
i , (8)

where here we’re using δi to represent the a priori uncertainties.
We left off with a quick example with more complicated computed quantites. What if we

have to multiply quantities together? Then we simply linearize about the value of interest. So if
y = x2, and we have an estimate of the uncertainty in x, δx, then we know that locally, near xo, we
can expand in a Taylor series:

y(xo + ∆x) = y(xo) +
dy

dx
∆x. (9)

This means that I can use my rules for addition to estimate the uncertainty in y:

δy(xo) =

∣∣∣∣∣dy(xo)

dx

∣∣∣∣∣ δx = 2xoδx (10)

and you can extend from here. If y = a1x + a2x
2 + a3x

3, what is δy? When will this estimate of
uncertainty break down?

Let’s consider the specific cases of turbulent heat fluxes. The sensible heat flux is:

Qs = ch(Tw − Ta)W, (11)

where ch is a constant, Tw is surface water temperature, Ta is air temperature (e.g. at 2 m elevation),
and W is wind speed. (Of course there are some complications: ch is not really a constant. We can
approximate it as: ch = ρaCp,aCh, where ρa ≈ 1.2 kg m−3 is density of air, the constant pressure
specific heat of air Cp,a ≈ 1 kJ kg−1 ◦C, and Ch ≈ 10−3.) A typical value for Qh is -5 W m−2.

The latent heat flux is:
QL = ce(qw − qa)W, (12)

where ce is a constant, qw is specific humidity at the water surface, and qa is specific humidity in
air. More completely, we can represent ce as:

ce = ρaLvCe, (13)

where Lv = 2264.76 kJ kg−1 is the latent heat of vaporization, and Ce ≈ 1.5 × 10−3. A typical
value for Qe is about -20 W m−2.

So suppose we measure Tw, Ta, and W with some uncertainties? What is the uncertainty in
Qs? To compute this, we simply follow our rules:

δ(Qs)
2 =

[
∂Qs

∂Tw

]2
δ(Tw)2 +

[
∂Qs

∂Ta

]2
δ(Ta)

2 +

[
∂Qs

∂W

]2
δ(W )2 (14)

= c2hW
2δ(Tw)2 + (−1)2c2hW

2δ(Ta)
2 + c2h(Tw − Ta)2δ(W )2 (15)
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We could further refine this to take into account the uncertainties in ch, which might depend on ρa,
and the other coefficients.

Likewise, the uncertainty in the latent heat flux can be estimated through error propagation,
and we can decide how much to build the uncertainties in Lv and Ce into our estimate.

This formulation for error propagation works like a charm. But it’s built on a few assumptions,
and it behooves us to keep these in mind. Namely, we assume that our perturbations are small
enough that it’s OK to linearize. And we assume that errors are uncorrelated, so that we can treat
each term (Tw, Ta, andW , for example) completely separately. What do we do if these assumptions
break down?

The central limit theorem
One of the reasons we like Gaussian distributions is because of the central limit theorem. This

says that when we sum variables together, the sum will tend to toward being Gaussian, even if the
individual variables are not. And this is plausible, since lots of variables we study are derived
quantities and therefore (sort of) Gaussian. Bendat and Piersol discussed summed variables under
the heading “central limit theorem”, but their discussion doesn’t provide a clear demonstration of
the central limit theorem, and I’m going to leave the formal derivation for 221B.

So let’s test this empirically: If we start with data drawn from a uniform distribution, and sum
together multiple values, how quickly do our results converge to Gaussian?

b=rand(100000,100)-.5; % define a matrix with 100 sets of random values,
% each with 100000 elements

cb=cumsum(b,2); % compute the summation of multiple random variables
% now compute the pdf
clear m1 m2
for i=1:100
[m1(i,:),m2(i,:)]=hist(cb(:,i),-12:.1:12);
end
%
% plot the first five values
plot(m2(1,:),m1(1:5,:)/100000/.1,’LineWidth’,2)
axis([-5 5 0 1])
ylabel(’probability density’,’FontSize’,14)
xlabel(’random variable’,’FontSize’,14)
legend(’N=1’,’N=2’,’N=3’,’N=4’,’N=5’)

The results of this calculation (shown in Figure 1 provide visual evidence for fairly rapid conver-
gence for the uniform distribution.

Non-Gaussian distributions
As we noted before, unsummed geophysical variables are often non-Gaussian. We’ve talked

about uniform distributions and double exponentials. Here are some particularly important special
cases.

We noted last time that the Rayleigh distribution is a good representation for wind speed,
which is necessarily positive. It is defined from the square root sum of two independent Gaussian
components squared, y =

√
x21 + x22.

p(y) =
y

σ2
exp

[
− y2

2σ2

]
. (16)
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The more generic form of the Rayleigh distribution is the Weibull distribution (for positive x
only):

p(x) =
k

λ

(
x

λ

)k−1
exp

[
−
(
x

λ

)k
]

(17)

If k = 2 and λ =
√

2σ, this is the Rayleigh distribution. If k = 1, it represents a one-sided
exponential distribution.

The Rayleigh distribution that brings us to the χ2 distribution. Suppose we define a variable:

χ2
n = z21 + z22 + z23 + ...+ z2n. (18)

Then χ2
n is a random chi-square variable with n degrees of freedom (and n is simply the number

of independent elements that we sum.) Then we can define a functional form for this:

p(χ2
n) =

1

2n/2Γ(n/2)
exp

(
−χ2

2

)
(χ2)(n/2)−1, (19)

where Γ(n/2) is the gamma function (and this is a function that you normally access through
a look-up table or a function programmed into Matlab, for example). Lots of variables end up
looking like χ2, so we’ll use this a lot to assess uncertainties, and for this we’ll need the cumulative
distribution function.

Cumulative distribution functions
The cumulative distribution function C(x) is the probability of observing a value less than x.

It can be computed by integrating the pdf.

C(x) =
∫ x

−∞
p(x′)dx′. (20)

C(x) is 0 when x approaches minus infinity, indicating that there’s a negligibly small chance of
having an infinitely small value of x, and it is 1 when x goes to plus infinity, which says that there
is a 100% chance of observing some value. The midpoint, where C(x) = 0.5 is the median.

For a Gaussian, the cdf is defined to be an error function. For a chi-squared function, it’s
defined as

C(x) =
1

Γ(n/2)
γ(n/2, x/2), (21)

where γ is the lower incomplete Gamma function (and like the Gamma function Γ(n/2), it is
accessed through a look-up table. What is the cdf of a uniform distribution?

Are two pdfs different?
So now let’s return to the heart of our problem. How do we tell if two pdfs differ? We’ve

already noted that two data sets can look wildly different but still have the same mean and variance,
so clearly we need something more than just the mean and variance. We can go back to our
Gaussian overlaid on empirical pdf and eyeball the difference to say that they’re close enough, or
not plausibly similar. We can evaluate whether the mean and standard deviation differ. All of this
is good, but it doesn’t exploit the full range of information in the pdf. We need a metric to measure
how different two distributions are.

Here are a couple of strategies. One notion is to ask about the largest separation between
2 pdfs. We compute two cdfs—in this case one empirical and one theoretical, but we can also
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do this with two empirical cdfs. We find the maximum separation between the distributions, the
Komogorov-Smirnov statistic:

Dn = sup
n
|Cn(x)− C(x)| (22)

and then we can predict the probability that a data set with n elements should differ from the ideal
distribution by Dn. Matlab has a “kstest” function (or “kstest2”) that sorts through the parameters
for this. However, we have to be careful with this, because usually our data are correlated, and we
don’t have as many degrees of freedom as we think. The easiest solution is to decimate the data
set so that the number of elements reflects the number of degrees of freedom.

A second strategy is to bin the data and ask whether the number of data in the bin is consistent
with what we’d expect, using a χ2 statistics. In this case for comparisons with a theoretical pdf,

χ2 =
∑
i

(Ni − ni)
2

ni

, (23)

where Ni is the observed number of events in bin i, and ni is the theoretical or expected number of
events in bin i. For comparisons between two distributions,

χ2 =
∑
i

(Ni −Mi)
2

Ni +Mi

, (24)

where Ni and Mi are each observed numbers of events for bin i. The values of χ2 are evaluated
using the χ2 probability function Q(χ2|ν), which is an incomplete gamma function, where ν is the
number of bins (or the number of bins minus one, depending on normalization). In Matlab this is

gammainc(chi_squared/2,nu/2)

Fitting a function to data: least-squares fitting
Now, we’ve laid a lot of ground work. Let’s think about our time series. If we look at SST

records, for example, how can we determine whether temperatures are increasing or decreasing
over time. Let’s suppose we’re looking for a linear trend. Then

T = To + bt, (25)

where T represents our measured temperature data, To is a constant (unknown), t is time, and b
is the time rate of change. We have lots of observations, so we really should represent this using
vectors (which we’ll indicate with bold face):

T = To + bt. (26)

We’ll want to find the best estimates of the scalars To and b to match our data. Formally, provided
that we have more than two measurements, this is an over-determined system. Of course, we’re
talking about real data, so we should acknowledge that we have noise, and our equations won’t be
perfect fits. We could write:

T = To + bt + n, (27)

where n represents noise and is unknown. Now the system is formally underdetermined. But we
won’t lose hope. We’ll just move forward under the assumption that the noise is small.
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Figure 1: Probability density function for summed data drawn from a uniform distribution. If
N = 1, so only one data value is used, the distribution is uniform. If N = 2, is is a triangle
distribution. As N increases, the distribution rapidly evolves to more closely resemble a normal
distribution.


