
UCSD—SIOC 221A: (Gille) 1

Lecture 5:
Reading: Bendat and Piersol, Ch. 4.5.1, 11.1, 11.2

Recap
Last time we looked at least-squares fitting. We derived the formula for a least-squares fit and

showed that we could find a linear trend and a sinusoidal variation. We set up the least squares
problem and looked at sinusoidal fits, and we finished up by asking what would happen if we fit
multiple sinusoidal signals at once. That’s where we’ll start today.

Least-squares fits and misfit
You’ll recall that last time we considered a least-squares fit of the form

Ax+ n = y. (1)

The misfit is defined as a squared quantity so should follow the χ2 statistic. (Yet another use of
χ2.) If I believe my a priori uncertainties in my data are σ, then I expect that my misfit should
roughly match my uncertainty so I can define a weighted summed misfit:

χ2 =
N∑
i=1

(
yi −

∑M
j=1 ai,jxj

σi

)2

. (2)

Here we’re summing the squared misfit of each row in our matrix equation, weighted by our
uncertainty. If our error bars make sense, then this should yield about N , reduced by the number
of functions were fitting. So we expect that χ2 will be about N − M , which is the number of
degrees of freedom, ν. Formally we can decide if our fit is too good to be true by evaluating χ2

using the incomplete gamma function, to find where the observed χ2 falls within the expected pdf
of a χ2 distribution:

p=gammainc(chi_squared/2,nu/2,’upper’)

(Here we divide both χ2 and ν by 2 because of the way that gammainc is defined.) If p is smaller
than 0.05 or greater than 0.95, then our observed value is outside the range expected for 90% of
observed χ2 values. If p is near 1, it can tell us that our fit is too good to be true. Likewise, if p is
too small, it can tell us that our fit isn’t properly representing the data—either the model is wrong,
or the a priori error bars are too large.

Alternatively, we can solve for upper and lower threshold χ2 values: if χ2 > χ2
upper, then we

reject the hypothesis at the α level. And if χ2 < χ2
lower we also know we’re out of range. So

chi2_upper = gammaincinv(0.05,nu/2,’upper’)*2.
chi2_lower = gammaincinv(0.05,nu/2,’lower’)*2.

What happens in the limit when we fitN data points withN columns in matrix A? The matrix
A is an N ×N square matrix, and we are solving for as many unknowns in x as we had data in y.
In this case, if χ2 is zero, p will be 1, warning us that we’re over-fitting our data. What happens to
our noise n? By using N orthogonal functions, we obtain a perfect fit and the noise is zero. That’s
convenient, but it loses any information that we might have had about uncertainties in our data. If
we made noisy measurements, we might not have any reason to expect a perfect fit, but we’ll have
one anyway.

UCSD—SIOC 221A: (Gille) 2

Multiple oscillatory signals
You might wonder if you’ll bias your results by fitting for all of the sinusoidal variability all at

once. Usually, the answer is no. Assuming that your time series is long enough, sinusoidal frequen-
cies are orthogonal to each other: there is no correlation between sin(2πt/T) and sin(2π2t/T), just
as there is no correlation between the sine and cosine components.

So we can take this to the maximum limit. Suppose we just want to fit sines and cosines to
our data. How many frequencies can we fit? If I’m going to do this, then I’ll need to make sure
that each row of my matrix equation is linearly independent, which means that I’ll want to make
sure that each column of A is orthogonal, so I can’t choose frequencies that are too closely spaced.

Monthly and fortnightly tides: Beats
If you look at pressure records from the pier, you’ll see that the amplitude of the pressure

varies on monthly and fortnightly timescales. At first glance, you might wonder if this is an extra
tidal forcing that you need to take into account. In reality, it’s just the interference pattern between
the M2 lunar semi-diurnal tide and the S2 solar semi-diurnal tide. To see where this comes from,
think about the trigonometry identies:

cos(ω1t) cos(ω2t) =
cos((ω1 + ω2)t) + cos((ω1 − ω2)t)

2
. (3)

In words, this means that the sum of two sinusoidal signals at adjacent frequencies (ω ± δ) is the
product of cosines: a rapid sinusoidal wave cos(ωt) multiplied by a slow envelope cos(δt). We see
this for the tidal peaks, but we also expect it for other signals. For example, think about how an
annual cycle might modulate an M2 tide if for example the strength of the tide changed seasonally.

Least-Squares Fitting Sines and Cosines
Least-squares fitting is particularly tidy when the functions that we use for our fit, the columns

of our matrix A, are completely orthogonal, because then the fit to one function has no impact on
the fit to the other functions.

Consider the special case where the columns of A are made up of sines and cosines, so

A =

[
1 cos(ωt) sin(ωt) cos(2ωt) sin(2ωt) · · ·
...

...
...

...
...

]
, (4)

where ω = 2π/T and T is the total duration of the data record. The dot product of any two columns
i and j of A is zero if i 6= j. If I have data at N evenly spaced time increments, t1, t2, ...tN , then
this orthogonality property holds for all frequencies from ω throughNω/2. Since I have a sine and
cosine at each frequency (up to frequency Nω/2 where sine might be zero at all points in time),
this means that I can define a total of N independent orthogonal columns in A.

On the other hand, if I define a column of A to have a frequency ω/2, it won’t be orthogonal
to my other functions over the range of this data. For example, between 0 and T , sin(ω/2) varies
from 0 to 1 to 0 and is always positive, meaning that it will be positively correlated with a constant.
In fact, sines and cosines with frequencies that are ω multiplied by integers rangings from 0 toN/2
make a complete set that spans all space, and there are no additional N -element vectors that I can
add to A that would also be orthogonal to all other columns of A.

The orthogonality of the columns of A is really important. It means that my solution for x1
is completely independent of my solution for x2. Here are some results for a set of 128 random

UCSD—SIOC 221A: (Gille) 3

numbers, b.

b̂ = −0.0629− 0.0620 cos(ωt)− 0.1339 sin(ωt) (5)
b̂ = −0.0629− 0.0960 cos(2ωt) + 0.1117 sin(2ωt) (6)
b̂ = −0.0629− 0.0620 cos(ωt)− 0.1339 sin(ωt)− 0.0960 cos(2ωt) + 0.1117 sin(2ωt), (7)

where b̂ is our fitted approximation to b. You can see that the amplitudes of cos(ωt) and cos(2ωt)
are the same regardless of whether A contains 3 columns or 5 columns.

Code to do this:

x=randn(128,1);
A=[ones(128,1) cos(2*pi*(1:128)’/128) sin(2*pi*(1:128)’/128) ...

cos(4*pi*(1:128)’/128) sin(4*pi*(1:128)’/128)];

% solution for fitting 5 values
inv(A’*A)*A’*x

% solution for fitting 3 values, with low frequency sine and cosine
inv(A(:,1:3)’*A(:,1:3))*A(:,1:3)’*x

% solution for fitting 3 values, with higher frequency sine and cosine
inv(A(:,[1 4:5])’*A(:,[1 4:5]))*A(:,[1 4:5])’*x

What happens if we want to fit the frequency ω/2? In this case, it won’t be orthogonal to my
other functions over the range of this data. For example, between 0 and T , sin(ω/2) varies from
0 to 1 to 0 and is always positive, meaning that it will be positively correlated with a constant. In
fact, sines and cosines with frequencies that are ω multiplied by integers rangings from 0 to N/2
make a complete set that spans all space, and there are no additional N -element vectors that I can
add to A that would also be orthogonal to all other columns of A.

If we take a time series of N elements, then the lowest frequency that we can resolve is 1
cycle per N elements, so cos(2πi/N), where our counter i runs from 1 to N (or from 0 to N − 1).
We can find two coefficients for this: one for the cos component and one for the sin component.

Actually, maybe a better way to think about this is that the lowest frequency we can resolve
is cos(0i/N) = 1, which is a constant and represents the mean. Since sin(0) = 0, there is only a
cosine component for frequency 0.

At any rate, after considering 1 cycle per N points, the next frequency we can resolve that
will actually be fully orthogonal is 2 cycles per N points. We can keep counting upward: 3 cycles
per N points, 4 cycles per N points, and so forth. All of these are guaranteed to be orthogonal over
our domain of N points.

What is the maximum number of cycles that we can resolve in N points? One possibility
would be that the maximum is N cycles per N points. That would require a full sinusoidal oscil-
lation squeezed between data element 1 and data element 2. But if you think about it, we wouldn’t
expect to have enough information to determine the amplitude of a sine wave that had to squeeze
itself between consecutive observations. Moreover if N cycles per N points were the maximum,
this would mean that we’d be solving for 2N coefficients with only N data points. Clearly that
would require more information than we have available.

Last time we noted that with N data points, we can fit a maximum of N functions. If we
fit sine and cosine pairs, this translates into N/2 cosines and N/2 sines. The highest frequency

UCSD—SIOC 221A: (Gille) 4

we can resolve is 1 cycle every 2 data points, so N/2 cycles in N points, and this is the Nyqust
frequency.

And the strategy of least-squares fitting all possible frequencies that can be resolved represents
the discrete Fourier transform. It’s a slow and inefficient Fourier transform, but it is the essence of
this class and it will be the building block for everything we do in the remainder of the quarter.

Orthogonality and Sines and Cosines
Last time we talked about the importance of having independent columns in our matrix A and

noted that sines and cosines are particularly useful since they are orthogonal. Let’s work through
this a little more carefully.

Consider a record of duration T with N data points. I can imagine squeezing into the period
T , one sine wave, or two, or three, or four. How do I tell if my records are orthogonal?∫ T

0

sin

(
2πnt

T

)
sin

(
2πmt

T

)
dt =

1

2

∫ T

0

cos

(
2π(n−m)t

T

)
− cos

(
2π(n+m)t

T

)
dt

=
1

2

T

2π

sin
(

2π(n−m)t
T

)
n−m

−
sin
(

2π(n+m)t
T

)
(n+m)

∣∣∣∣∣∣
T

0

=

{
0, if n 6= m
T
2
, if n = m

(What matters is that this is only non-zero in the special case when n = m. For the moment, the
fact that the integral yields T/2 when n = m is a minor detail.) By extension the same applies for
two cosines, or a sine multiplied by a cosine.

The Fourier Transform
So our least-squares fit of N data to N sinusoids was clearly too good to be true, but we’re

not doing fitting here, so we’re going to proceed along this line of reasoning anyway. Our goal is
to rerepresent all of the information in our data by projecting our data onto a different basis set.
In this case we’ll take the projection, warts and all, and we want to make sure we don’t lose any
information.

So we want to represent our data via sines and cosines:

x(t) =
a0
2

+
∞∑
q=1

(aq cos(2πqf1t) + bq sin(2πqf1t)) , (8)

where fq = 1/Tp, and Tp is the duration of the record (following Bendat and Piersol). Formally
we should assume that the data are periodic over the period Tp. We find the coefficients a and b by
projecting our data onto the appropriate sines and cosines:

aq =
1

Tp

∫ Tp

0

x(t) cos(2πqf1t) dt (9)

and

bq =
1

Tp

∫ Tp

0

x(t) sin(2πqf1t) dt (10)

solved for q = 0, 1, 2,

UCSD—SIOC 221A: (Gille) 5

It’s not much fun to drag around these cosines and sines, so it’s useful to recall that

cos θ =
exp(iθ) + exp(−iθ)

2
(11)

sin θ =
exp(iθ)− exp(−iθ)

2i
, (12)

which means that we could redo this in terms of eiθ and e−iθ. In other words, we can represent our
data as:

x(t) =
∞∑

q=−∞

[âq exp(i2πqf1t)] =
∞∑

q=−∞

[âq exp(iσqt)] (13)

where σq = 2πq/T , and âq represents a complex Fourier coefficient. If we solved for our coeffi-
cients for cosine and sine, then we can easily convert them to find the complex coefficients âq for
exp(iσqt) and exp(−iσqt). Consider :

a cos θ + b sin θ =
a

2
(eiθ + e−iθ) +

b

2i
(eiθ − e−iθ) (14)

=
a− ib
2

eiθ +
a+ ib

2
e−iθ. (15)

This tells us some important things. The coefficients for eiθ and eiθ are complex conjugates. And
there’s a simple relationship between the sine and cosine coefficients and the e±iθ coefficients. In-
stead of computing

∑N
j=1 aj cos(ωjt) and

∑N
j=1 bj sin(ωjt), we can instead find

∑N
j=1 âj exp(iωjt)

and then use the real and imaginary parts to represent the cosine and sine components. This gives
us a quick shorthand for representing our results as sines and cosines.

Fourier transform in continuous form
Bracewell’s nice book on the Fourier transform refers to the data as f(x) and its Fourier

transform as F (s), where x could be interpreted as time, for example, and s as frequency. Here I’ve
rewritten to roughly use Bendat and Piersol’s notation. In continuous form, the Fourier transform
of x(t) is X(ω) (where ω = qf1), and the process can be inverted to recover x(t).

X(ω) =

∫ ∞
−∞

x(t)e−i2πtω dt (16)

x(t) =

∫ ∞
−∞

X(ω)ei2πtω dω (17)

(following Bracewell).
But there are lots of alternate definitions in the literature:

X(σ) =

∫ ∞
−∞

x(t)e−itσ dt (18)

x(t) =
1

2π

∫ ∞
−∞

X(σ)eitσ dσ (19)

or

X(σ) =
1√
2π

∫ ∞
−∞

x(t)e−itσ dt (20)

x(t) =
1√
2π

∫ ∞
−∞

X(σ)eitσ dσ (21)

UCSD—SIOC 221A: (Gille) 6

So we always have to be careful about our syntax.
Given the vast array of notation, we’re going to try very hard to stick to Bendat and Piersol’s

forms:

X(f) =

∫ ∞
−∞

x(t)e−i2πft dt (22)

x(t) =

∫ ∞
−∞

X(f)ei2πft df (23)

The same questions about choices of notation apply in the discrete form that we consider
when we analyze data. And we can get ourselves really confused. So we have to keep in mind one
rule: we don’t get to create energy. That means that we need to have the same total variance in our
data set in the time domain as we have in the frequency domain. This is Parseval’s theorem, and
we’ll return to it.

