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Lecture 1: Introduction. Why Statistics?
This course addresses the analysis of oceanographic observations and, as they become more

complex, ocean models. Much of the material involves statistical procedures, which may appear
foreign to students raised on a diet of deterministic, mathematical problems. The purpose of this
lecture is to explain why a statistical perspective is appropriate in oceanography.

Even if we accept the proposition that the ocean can be exactly described by deterministic
equations, there are three reasons why a statistical approach is practical.

1. The ocean is complex, requiring the specification of many variables, in fact, many more than
can be observed.

2. The ocean is nonlinear, so that groups of variables cannot be studied in isolation.

3. Ocean observations are not controlled; all variables change as the system evolves.

Example of reason 1
Suppose we could write Newton’s law applied to molecules to provide a complete, determin-

istic description of the ocean,

mi
d2~xi
dt2

= ~fi(all molecules) (1)

wheremi is the mass of the molecule at ~xi, t is time, and ~fi is the force on molecule i depending on
all other molecules. Writing these equations would be a challenge, to say the least. To get an idea
of the magnitude of the challenge, we calculate the number of molecules of water in the ocean,
given that the mass of the ocean is 1.4× 1024 g,

1.4× 1024g× 1mole
18g

× 6.0× 1023molecules
1mole

= 4.7× 1046molecules (2)

Putting aside the question of how we determine the force on each molecule, initial conditions would
be the position and velocity in three dimensions of each molecule. A complete initial specification
would then require 2.8×1047 numbers. That this is a practically large number, consider the memory
in a typical laptop computer, which might have 32 GB RAM. If we were to store these numbers in
single precision format requiring 4 bytes, we would need 3.5× 1037 laptops.

It is impractical to study the ocean by following the motion of molecules, so the approach is
to treat the ocean as a continuous medium. We define a volume that is large enough to contain
many molecules, and then a continuum velocity would be

~v =

∑
mi~vi∑
mi

(3)

where the sum is over the volume. This is a mass weighted average over the volume, and is thus
a statistical quantity. The volume must be defined so that it has many particles, and so that the
smallest motions in the ocean are much larger than the volume. This is the case for a volume of
about 1 mm on a side. There are

1.4× 1024 g × 1cm3

1g
×
(
10mm
1 cm

)3

× 1 volume
1 mm3

= 1.4× 1027 volumes (4)

such volumes in the ocean, which is still a large number. Clearly, there are more variables than can
practically be observed or specified, so the ocean is complex.
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Example of reason 2
The equation governing the momentum of a viscous fluid is the Navier-Stokes equation

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p− gẑ + ν∇2~v, (5)

which can be derived by application of (3) (Salmon 1998). The terms on the right-hand side are
pressure gradient, gravity, and viscous friction. We have already concluded that it is impractical
to apply this equation to the small volume used to define the continuum velocity in (3). The
way forward is to do some more averaging until we finally get to a problem with few enough
variables to specify that we can use our computer to solve it. Imagine an average that separates
the “large-scale” features that we plan to treat as deterministic from the “small-scale” stuff that we
will consider random. Denoting the average as 〈·〉, ~v is

~v = 〈~v〉+ ~v′ (6)

where
〈~v′〉 = 0, (7)

which makes explicit the separation into “large-scale”, and “small-scale” . In the following we
assume incompressibility

∇ · ~v = 0. (8)

Applying the averaging operator demonstrates that both large and small scale flow obey (8). Now
consider the lefthand side of (5) for one component of the velocity, ~v = (u, v, w):

∂u

∂t
+ ~v · ∇u. (9)

Applying the average to this expression, and assuming that partial derivatives and averaging can
be done in any order, produces

∂〈u〉
∂t

+ (〈~v〉 · ∇) 〈u〉+∇ · 〈~v′u′〉 . (10)

The small-scale velocity unfortunately appears in the expression for the time rate of change of
large-scale velocity. So our planned separation is not as simple as we might have hoped. In fact,
we need to know the statistics of the small-scale in order to describe the large-scale. This last term
in the expression is called the Reynolds stress, and its specification is one of the great unsolved
problems in fluid mechanics.

I am an old man now, and when I die and go to Heaven there are two matters on which
I hope enlightenment. One is quantum electro-dynamics and the other is turbulence of
fluids. About the former, I am really rather optimistic. Sir Horace Lamb, 1932.

There is a physical problem that is common to many fields, that is very old, and that
has not been solved. It is the analysis of turbulent fluids. Richard Feynman, 1963.
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The Reynolds stress appears because advection is nonlinear, making it so that the large-scale flow
cannot be studied in isolation of the small-scale flow. In general, parts of a nonlinear system cannot
be studied in isolation. This is in marked contrast to linear systems, where, for example, waves of
a single frequency can be studied in isolation of waves of all other frequencies. Acoustic waves
in the ocean approach the ideal of linearity. Most other processes in the ocean are intrinsically
nonlinear. Processes in the ocean that we may not wish to address then affect what does interest us
in ways that are difficult to predict, and may appear to us to be random. Thus, a statistical approach
is reasonable.

In recent years, a new wrinkle has been introduced to Reynolds averaging, by assuming that
the averaging operator is a filter that smooths out small-scale structure but might not have zero
mean. This process is referred to as “coarse-graining”.

Example of reason 3
An oceanographer attempting to observe the ocean is doing something much different from

a physicist doing an experiment in a laboratory. The quality of the physicist’s experiment is often
determined by how well extraneous factors are controlled so that the desired variable is measured
with high accuracy. The best experimentalists are distinguished by their skill in devising effective
controls. In contrast, oceanographers control almost nothing of what goes on in the ocean. An
oceanographer interested in studying the general circulation will encounter tides, internal waves,
eddies, turbulence, etc. which will confound observations. These uncontrolled processes may
sometimes be usefully thought of as random, and statistical approaches are useful.

Suppose we want to calculate the mean ocean surface temperature at the Scripps pier. We
could get all the data over the past 100 years and calculate the mean, but is that really what is
desired? Should we account for the four seasons, and have a mean value for each? What about El
Niños, which have a clear effect on temperature? In the end, we have to define over what data we
average, and then our mean will reflect that choice.

This example requires us to define what we intent to be “signal” (mean temperature), and
what processes are “noise” (seasons, El Niños, internal waves, etc.). By defining an average, we
make explicit the separation between signal and noise we will get. Finally, there are a number
of statistical tools we can use once we have defined the average. Defining signal and noise, and
determining an ensemble over which to average are challenging; doing this intelligently is what
makes a great observational scientist. Learning the statistical tools is easier, and is the subject of
this class.

Lorenz model (demo)
In 1963, Ed Lorenz devised a model that encapsulates some of the complex issues laid out

so far. This simple, deterministic model has only 3 variables and 3 equations, but its evolution
appears to have random elements:

dX/dt = −σX +σY
dY/dt = ρX −Y −XY
dZ/dt = −βZ +XY

(11)

We solve these equations using σ=10, ρ=30, β=8/3, from t = 0 to 100. Consider the plot of X
against Z, a plot of the phase plane (Figure 1). As you watch the phase plane fill in as a function of
time, you can see that it is essentially impossible to predict where the trajectory is going. X takes
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on values in either one of the “butterfly wings” in a detailed pattern (Figure 2). The reason that
this may appear random is that we don’t see Y in this plot. As the set of equations is deterministic,
given values of all three variables the trajectory is exactly determined. One feature of apparent
randomness is the crossings of trajectories. Given only X and Z at these points, it is impossible to
know which branch the trajectory will take.

The results of this profoundly shape what we do. The Lorenz equations underscore the com-
plexity of the ocean, the impact of nonlinearities, and the ways in which variables change as a
system evolves. In the realm of prediction and predictability, the Lorenz equations tell us that
model results are sensitive to boundary conditions, is we want to make accurate predictions, we
need well constrained estimates of our initial conditions, that small anomalies (whether noise or
just unusual features) can have big impacts on simulations.

One effort in modern data science is to go through a process of equation discovery, using data
to find the equations or the parameters that underlie observations. What happens if you apply this
process to data generated from the Lorenz system? Pietro Verzelli has an interesting blog post that
attempts this, with decidedly mixed success. See https://verzep.github.io/Learning-Lorenz/.

Pseudorandom numbers
There are many ways to generate “pseudorandom” numbers on a computer. Because the

numbers are generated on a computer, which can only do reproducible, deterministic calculations,
the numbers are not truly random, so the term pseudorandom is used. A good pseudorandom
generator takes on all possible values between 0 and 1, and has a very long period before it repeats.
The pseudorandom generator on matlab rand uses the “Mersenne twister” algorithm and has a
period of (219937 − 1)/2. A time series created by using rand to make 3892 values is shown in
Figure 3.

Statistical terminology To get started, here’s a quick review of some definitions. A random vari-
able is a variable whose value is determined by a random process. If a process produces values
that are not perfectly predictable from what is known, it is a random process. A poorly controlled
experiment might be considered a random process. Any function of a random variable is also a
random variable. A realization of the process produces one random value of the variable. A large
collection of realizations produced under statistically identical conditions (the same deterministic
parameters) is an ensemble of “identically prepared” observations. The act of flipping a coin is a
random process. If we let x = 1 for “heads” and -1 for “tails”, x is a random variable. A single
flip produces a realization of x and an afternoon of flipping using the same technique would yield
an ensemble of realizations.

A central concept is the average or expected value of a random variable. The average of x is

〈x〉 = lim
N→∞

1

N

N∑
n=1

xn (12)

where xn is the value of x in the nth realization. Throughout these notes the symbol 〈·〉 will be
reserved for the ideal average requiring an infinite number of realization.

It is helpful to think of 〈·〉 as a linear operator which can be applied to random variables. It is
a linear operator because

〈X + Y 〉 = 〈Y +X〉 = 〈X〉+ 〈Y 〉, 〈aX〉 = 〈Xa〉 = a〈X〉, 〈XY 〉 = 〈Y X〉 6= 〈X〉〈Y 〉 (13)

https://verzep.github.io/Learning-Lorenz/
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Figure 1: The variables X and Z from the initial evolution of the Lorenz model with r = 28. Both
series start from t = 0 with initial conditions that differ by 0.1%. X shows that the evolution is
completely different for t > 31. This is an example of a nonlinear, unpredictable system that is not
complex (only 3 degrees of freedom).

when a is a constant.

Cumulative distributions and probability density functions
The complete description of a single random variable is its distribution function (or cumu-

lative distribution function) D or, equivalently, its probability density function (pdf) F . These
are defined by

Dx(r) = Fraction of occurrences with x < r, (14)

where the fraction of occurrences is a probability. The notation might seem a little unusual: the
random variable x is a subscript, and the distribution function depends on the deterministic variable
r. Some properties of the distribution function are:

Dx(−∞) = 0, (15)

Dx(∞) =
∫ ∞
−∞

dr F (r) = 1, (16)

Dx(r) ≤ Dx(s) if r ≤ s. (17)

The probability density function (pdf) is

Fx(r) =
d

dr
Dx(r) so that Fx(r) dr = Fraction of occurrences with r < x < r+ dr. (18)
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Figure 2: X-Z plane evolution of the Lorenz model shown in Figure 1. Data are taken from t > 50
when chaos has begun.

Some properties of the pdf are

Fx(r) ≥ 0 (19)∫ ∞
−∞

Fx(r) dr = 1 (20)

Dx(r) =
∫ r

−∞
Fx(r) ds (21)

Since the pdf is continuous, it is the limit of a histogram describing the number of occurrences in
each of several “bins” of x, normalized so that the area under the curve is 1.

In the deterministic case that every realization produces the constant x = A, then Fx(r) =
δ(r − A) and D would be a Heaviside unit step function with its edge at r = A. A handy repre-
sentation of the probability density function is

Fx(r) = 〈δ(r − x)〉. (22)

To see why this is so, let N be an effectively infinite number of realizations of x and M be the
number of realizations with x < r. Then, by definition,

Dx(r) =
M

N
=

1

N

N∑
n=1

∫ r

−∞
dy δ(y − xn) =

∫ r

−∞
dy〈δ(y − x)〉 (23)

from which (22) follows by differentiation with respect to r. The delta function is introduced into
the third term to generate 1 when xn > r and 0 when it is not.
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Figure 3: A series of uniformly distributed pseudorandom numbers between 0 and 1.


