
UCSD—SIOC 221B: (Davis, Rudnick, Gille) 1

Lecture 3: Joint probability density functions

Recap
In Lecture 2, we reviewed cumulative distribution functions and probability density functions,

and we started looking at how to generate random numbers with a known pdf. This lecture will
explore further examples to transform from one pdf to a different pdf, and then examine joint pdfs,
covariance and autocovariance.

We finished up with a recipe for converting from one dpdf to another. Here’s the procedure.

1. Given the desired pdf of your output values, find the corresponding cdf:

Dx(r) =

∫ r

−∞
Fy(s) ds. (1)

2. Find an analytic form of the cdf. (Or if the cdf is entirely empirical, define a means to match
the cdf to x for any arbitrary value between 0 and 1.

3. Set a random uniform distribution u equal to the cdf of x.

4. Solve for x in terms of u.

5. Now plug uniformly distributed values u into your equation to obtain x.

We looked at one example. Now let’s consider a slightly more complicated case.

Example 2. Generate random numbers that follow a triangle distribution.
Now we consider a more complicated case, in which randoom numbers follow a triangle

distribution of this form:

To create this distribution, first we need to determine the height h of the triangle:

Fx(r) = hr for 0 < r ≤ 1. (2)

The integral of this is required to be 1, so we can write.∫ 1

0

Fx(r) dr =
h

2
r2
∣∣∣∣1
0

=
h

2
, (3)

which tells us that h = 2. The corresponding cdf is

Dx = x2 for 0 < x ≤ 1. (4)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 2

Again, we set u equal to the cdf:
u = x2 (5)

and solve for x:
x =
√
u. (6)

We can test whether this worked in Matlab:

% generating random data with a triangle distribution
% pdf(x)=2x from 0 to 1
% cdf(x) = x.ˆ2

y=sqrt(u);
histogram(y,20,’Normalization’,’pdf’);
ylabel(’Probability density’,’FontSize’,14)
xlabel(’random value’,’FontSize’,14)
h=gca
set(h,’FontSize’,14)

or in Python

a=np.zeros([1000000])
for i in range(1000000):

a[i]=np.sqrt(np.random.random())

plt.hist(a,bins=50,density=’true’)
plt.plot(np.arange(0,1.05,.05),2*np.arange(0,1.05,.05))

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 3

Example 3. An arbitrary empirical distribution
In some cases, you simply want to generate random variables that adhere to a known pdf. For

this you won’t find an analytic solution, but you will create a mapping from the cdf to the random
values (e.g. winds at 55◦S). Given a random value between 0 and 1, you can use the empirical cdf
(derived from the empirical pdf of the data) as a lookup table to find the corresponding value of
your random variable.

Joint probability density functions
Data are not just single values. Most of what we want to know about the ocean involves how

one variable is related to another. Examples are how wind stress drives ocean currents, or how
vertical fluxes affect primary productivity, or how temperature is linked to salinity. What is the
probability of having a high salinity with low temperature? Dynamical equations describe such
relationships. If some aspect of the process is random, then we have use for statistics.

A complete description of a pair of random variables x and y is given by the joint probability
density function:

Fxy(r, s) = 〈δ(r − x)δ(s− y)〉. (7)

The joint pdf has the properties

Fxy(r, s) dr ds = Probability that r < x ≤ r + dr, s < y ≤ s+ ds. (8)

As we noted when we considered the pdf for one variable, the integral of a function multiplied by
the pdf gives its mean:

〈g(x, y)〉 =
∫ ∞
−∞

∫ ∞
−∞

ds g(r, s) Fxy(r, s) dr ds (9)

Since Fx(r) is the pdf of x, without regard for the value of y

Fx(r) =

∫ ∞
−∞

Fxy(r, s) ds. (10)

While we plotted pdfs as line plots in one dimension, joint pdfs make sense as contour plots
mapped out in space. Suppose you want to plot a pdf of two independent random variables. We
can do that in Matlab with the following code:

% Matlab’s default, as a 3 dimensional bar plot
histogram2(randn(1000,1),randn(1000,1),’Normalization’,’pdf’)

% or a more conventional 2-d plot
histogram2(randn(1000,1),randn(1000,1),’Normalization’,’pdf’,...

’Displaystyle’,’tile’)
colorbar

and in Pyton

b=np.zeros([1000000])
c=np.zeros([1000000])
for i in range(1000000):

b[i]=np.random.normal()

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 4

c[i]=np.random.normal()

H, xedges, yedges = np.histogram2d(b,c,[30,20],density=True)
plt.pcolormesh(xedges,yedges,H.T)
plt.colorbar()

We can plot this for Argo data. In the example in class, I extracted a block of recent Argo
profiles from the Argovis website (https://argovis.colorado.edu). That produsces a “json” data file
that we can read and plot, as shown in the code below and in Figures and .

file=’argovis.colorado.edu.json’;
fid=fopen(file);
raw=fread(fid,inf); % Reading the contents
str = char(raw’); % Transformation
fclose(fid); % Closing the file
data = jsondecode(str); % Using the jsondecode function

% to parse JSON from string

for k=1:length(data)
if(isfield(data{k}.measurements,’psal’))
for i=1:length(data{k}.measurements)
if(˜isempty(data{k}.measurements(i).psal))
psal(i,k)=data{k}.measurements(i).psal;

else
psal(i,k)=NaN;

end
pres(i,k)=data{k}.measurements(i).pres;
temp(i,k)=data{k}.measurements(i).temp;
end

end
end
xx=find(pres==0 & temp==0 & psal==0);
pres(xx)=NaN; temp(xx)=NaN; psal(xx)=NaN;
xx=find(temp==0 & psal==0);
temp(xx)=NaN; psal(xx)=NaN;

% once we have the data we could plot a conventional T-S diagram
plot(psal,temp,’.’)
h1=gca
set(h1,’FontSize’,14)
xlabel(’salinity’,’FontSize’,14)
ylabel(’temperature (ˆoC)’,’FontSize’,14)

% or we could plot all the points as a joint pdf
histogram2(psal,temp,’Normalization’,’pdf’,’Displaystyle’,’tile’);
h1=gca
set(h1,’FontSize’,14)
h2=colorbar
h2.Label.String = ’probability density’;
set(h2,’FontSize’,14)

https://argovis.colorado.edu/ng/home?mapProj=WM&presRange=%5B0,2000%5D&selectionStartDate=2022-12-30T21:22:45Z&selectionEndDate=2023-01-13T21:22:45Z&threeDayEndDate=2023-01-11T21:22:45&shapes=%5B%5B%5B-1.549068,-155.301603%5D,%5B-29.91931,-154.660086%5D,%5B-30.305418,-145.983813%5D,%5B-30.117417,-137.290056%5D,%5B-29.361742,-128.678655%5D,%5B-0.907702,-127.395622%5D,%5B-1.153713,-136.696104%5D,%5B-1.369394,-145.99809%5D,%5B-1.549068,-155.301603%5D%5D%5D&includeRealtime=true&onlyBGC=false&onlyDeep=false&threeDayToggle=false

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 5

xlabel(’salinity’,’FontSize’,14)
ylabel(’temperature (ˆoC)’,’FontSize’,14)

or

courtesy of Donata Giglio, University of Colorado Boulder
from argovisHelpers import helpers as avh
import datetime, pandas, matplotlib, scipy, numpy
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm

API_ROOT=’https://argovis-api.colorado.edu/’
API_KEY=’’

get TS profiles in a region and time period of interest

pac_region = [[-155,-1.5],[-155,-30],[-145,-30],[-145,-1.5],[-155,-1.5]]
argo = {

’startDate’: ’2022-12-30T00:00:00Z’,
’endDate’: ’2023-01-13T00:00:00Z’,
’polygon’: pac_region,
’data’: ’temperature,1,salinity,1’

} # querying only profiles that have both temperature and salinity

floats = avh.query(’argo’, options=argo, apikey=API_KEY, apiroot=API_ROOT)

let’s select only levels that have a valid T and S
def delete_if_none(list1, list2, list3):

result1 = []
result2 = []
result3 = []

for i in range(len(list1)):
if list1[i] is not None and list2[i] is not None and list3[i] is not None:

result1.append(list1[i])
result2.append(list2[i])
result3.append(list3[i])

return result1, result2, result3

def find_variable_index(profile, variable):
return profile[’data_info’][0].index(variable)

filtered_profiles = []
for f in floats:

filtered_pressure, filtered_temperature, filtered_salinity = delete_if_none(f[’data’][find_variable_index(f, ’pressure’)], f[’data’][find_variable_index(f, ’temperature’)], f[’data’][find_variable_index(f, ’salinity’)])
filtered_profiles.append([filtered_pressure, filtered_temperature, filtered_salinity])

only makes sense for profiles that have levels spanning the region of interest

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 6

shallow = 10
deep = 1800

select only profiles that have measurements in the range of interest
profiles = [f for f in filtered_profiles if f[0][0] < shallow and f[0][-1] > deep]

dump all the pressure, temperature, and salinity values
(a more graceful approach would interpolate to a common grid)
pres=[]
psal=[]
temp=[]
for i in range(len(profiles)):

pres=np.append(pres,list(profiles[i][0]))
temp=np.append(temp,list(profiles[i][1]))
psal=np.append(psal,list(profiles[i][2]))

make a scatter plot
plt.scatter(psal,temp,s=1,c=-pres)
plt.ylabel(’Temperature, degC’)
plt.xlabel(’Salinity, psu’)
plt.colorbar()

make a joint pdf
plt.hist2d(psal,temp,bins=[20,20],density=True,cmin=1.e-100)
plt.ylabel(’Temperature, degC’)
plt.xlabel(’Salinity, psu’)
cbar = plt.colorbar()
cbar.set_label(’probability density’)

Figure 1: T-S diagram for temperature vs salinity for all Argo profiles in the tropical Pacific from
roughly 0 – 30◦S and 150 – 130◦W, from 30 December 2022 through 13 January 2023.

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 7

Figure 2: Temperature–salinity data from Figure presented as a joint pdf.

Conditional probability density function
The conditional probability density function is defined as follows:

Fx(r |s) = probability that r < x ≤ r + dr given that y = s. (11)

We’d like to be able to write the conditional pdf in terms of the joint pdf. The following may
be short of a rigorous mathematical proof, but should help to explain the idea. Suppose we have
N realizations of random variables x and y. The number of realizations in a region r < x ≤
r + dr, s < y ≤ s+ ds is:

NFxy(r, s) dr ds. (12)

For example, this would be the number of realizations in a bin of Figure 1. The number of realiza-
tions in s < y ≤ s+ ds is

NFy(s) ds. (13)

For example, this would be the number of realization in a horizontal strip of bins. So the fraction
in r < x ≤ r dr given that y = s is

Fx(r |s) dr =
NFxy(r, s) dr ds

NFy(s) ds
(14)

Thus the conditional pdf is

Fx(r |s) =
Fxy(r, s)

Fy(s)
(15)

Bayes’ Theorem
The formal definition for conditional probability can be written for r in terms of s, or for s in

terms of y. We have

Fx(r |s) =
Fxy(r, s)

Fy(s)
(16)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 8

and also

Fy(s |r) =
Fxy(r, s)

Fx(r)
(17)

We can combine these in a number of ways:

Fx(r |s) =
Fy(s|r)Fx(r)

Fy(s)
(18)

Equivalently:

Fx(r |s) =
Fy(s|r)Fx(r)∫∞
−∞ Fxy(r, s) dr

=
Fy(s|r)Fx(r)∫∞

−∞ Fy(s|r)Fx(r) dr
(19)

This expression is called Bayes’ Theorem and provides a formal framework for considering the
probability of an event given prior knowledge.

If the random variables x and y are independent, then Fx(r|s) is independent of s, which
implies from (16) that

Fxy(r, s) = Fx(r)Fy(s). (20)

General form of joint Gaussian pdf
To place the formal definitions in context, consider a joint pdf for independent Gaussian vari-

ables:

Fxy(r, s) =
1√
2πσx

exp

(
−r2

2σ2
x

)
1√
2πσy

exp

(
−s2

2σ2
y

)
(21)

=
1

2πσxσy
exp

[
−1
2

(
r2

σ2
x

+
s2

σ2
y

)]
. (22)

If x and y are uncorrelated, the joint pdf is either isotropic (if σx = σy) or has no tilt.
We can write the joint Gaussian distribution in a general form for a collection of variations

x1, x2, ...xN , with σ1 = σ2 = 1:

Fx1x2....(r1, r2...) = (2π)−N/2 exp

[
−1

2

N∑
i=1

r2i

]
(23)

Of course things change if we have two correlated variables, and in class we looked at the joint
pdf that emerges from correlated noise, for example when x is drawn from a Gaussian distribution
and y = x + r, where r is noise drawn from a Gaussian distribution. We also looked at the
correlation of y and z when z = x+ s, where s is different from r and also drawn from a Gaussian
distribution. Both cases result in a tilted joint pdf, providing clear evidence that x and y (or x and
z) are correlated.

% define correlated noise
x=randn(100000,1); y=randn(100000,1)+x;
z=randn(100000,1)+x;

% plot joint pdf for x and y
histogram2(x,y,’Normalization’,’pdf’,’Displaystyle’,’tile’)

% plot joint pdf for y and z
histogram2(y,z,’Normalization’,’pdf’,’Displaystyle’,’tile’)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 9

or

x=np.zeros([1000000])
y=np.zeros([1000000])
z=np.zeros([1000000])
for i in range(1000000):

x[i]=np.random.normal()
y[i]=np.random.normal()+x[i]
z[i]=np.random.normal()+x[i]

plt.figure(figsize = (10,4))
plt.subplot(1,2,1)
H, xedges, yedges = np.histogram2d(x,y,[30,30],density=True)
plt.pcolormesh(xedges,yedges,H.T)
plt.colorbar()

plt.subplot(1,2,2)
H, xedges, yedges = np.histogram2d(y,z,[30,30],density=True)
plt.pcolormesh(xedges,yedges,H.T)
plt.colorbar()

Covariance
Calculating the joint pdf is often more than we can accomplish from real data. The covariance

is a simple statistic relating variables x and y:

Cxy = 〈x′y′〉, (24)

where the primes indicate that these are fluctuations about the mean. The covariance of a variable
with itself is the variance:

Cyy = 〈y′y′〉. (25)

The correlation is sort of a normalized covariance:

ρxy =
〈x′y′〉√
〈x′2〉〈y′2〉

. (26)

How can we interpret the correlation? Let’s consider a linear model, where y is a linear
function of x. In the following, we assume that variables x and y have zero means, or equivalently
that they have had their means removed, so the primes are dropped. A linear relationship between
modeled ŷ and measured x is

ŷ′ = αx′, (27)

where α is a constant chosen to make ŷ approximate y.
We could also write this in a more general form as a matrix equation to fit lots of coefficients

αj to multiple form of data. In general form, we would write

yi =
N∑
j=1

Aijαj, (28)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 10

where the elements of Aij represent the jth element of data type i. As a matrix equation we would
write where the elements of Aij represent the jth element of data type i. As a matrix equation we
would write

y = Aα, (29)

where y is a vector with M elements, α is a vector with N elements, and A is an M ×N matrix.
We’ll come back to this case later.

Let’s continue with the one variable fit that we’re considering now. We choose to minimize
the mean-square error (mse):

ε = 〈(ŷ − y)2〉 = α2〈x2〉 − 2α〈xy〉+ 〈y2〉. (30)

We’ll pick up with this next time.

Sidebar: Moments of the pdf
Here’s a quick refresher on the moments of the pdf.
The pdf contains more information than can usually be determined for real processes. Conse-

quently, practical analysis often involves simpler statistical measures. The simplest is, of course,
the mean x. Others are concerned with variations about the mean and are most conveniently de-
fined in terms of the fluctuation

x′ = x− 〈x〉. (31)

A prime on a random variable generally denotes a fluctuation. The variance µ and the standard
deviation σ,

µ2 = 〈X ′2〉, σ = µ
1/2
2 , (32)

describe, respectively, the “energy” of the fluctuations and a typical fluctuation size. The variance
should not be confused with the mean square x2. Beyond the mean and variance we might compute
any number of higher moments

µn = 〈x′n〉. (33)

As we will later see, as n increases it becomes progressively harder to obtain an accurate estimate
of µn from a finite set of data. Thus a few lower moments are all that can typically be determined.

As we noted before, given a known pdf of x, we can compute the mean of a function G(x),
by integrating the product of G(x) times the pdf. This is useful for estimating moments of the pdf:
The first moment of the pdf, the mean, is:

〈x〉 =
∫ ∞
−∞

rFx(r) dr. (34)

The second moment, the variance, is

µ2 = 〈x′2〉 =
∫ ∞
−∞

(r − 〈x〉)2Fx(r) dr. (35)

The third and fourth moments are not terribly interesting by themselves:

µ3 = 〈x′3〉 =
∫ ∞
−∞

(r − 〈x〉)3Fx(r) dr (36)

µ4 = 〈x′4〉 =
∫ ∞
−∞

(r − 〈x〉)4Fx(r) dr. (37)

UCSD—SIOC 221B: (Davis, Rudnick, Gille) 11

However, in normalized form, these tell us about the shape of the pdf.
The lopsidedness of the pdf is measured by the skewness:

skewness =
µ3

µ
3/2
2

. (38)

The sign of the skewness indicates whether the tails of the pdf are more pronounced on the positive
or negative side of the mean.

The “tailedness” of the pdf, that is the relative occurrence of outliers in the distribution, is
measured by kurtosis:

kurtosis =
µ4

µ2
2

. (39)

For a Gaussian distribution, kurtosis = 3, and for a uniform distribution, kurtosis = 1.8.

