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Lecture 8: Putting least squares fitting to work

Recap
In Lecture 7, we went through the mechanics of least-squares fitting. Today, we want to

put it to work by applying least-squares fitting to some specific examples. Recall that our basic
framework is to solve a minimization problem if the form:

Gm = d (1)

where d defines our data, G is a matrix defining the structure of the model that we fit to the data,
and m is a vector containing the model parameters. We solve this as a linear equation.

Optimal Multi-Parameter Analysis
Let’s start with a specific example: Optimal Multi-Parameter (OMP) analysis. Suppose you

have oceanographic profile measurements from a certain location. You can imagine that water at
this location represents a mixture of multiple end members, and you want to know how much each
of the end members has contributed to the water at your location. OMP provides a framework for
deciding on fractional contributions. There are a number of variants of this, but to keep things
simple, let’s suppose that we just want to know the mixture of water masses on a single isopycnal
surface, following for example, the analysis of Frants et al (2013).

In this case, our data vector contains water properties on the isopycnal surface:

d =



1
T
S
O2

PO4

NO3

Si
PV


, (2)

where each element of d is a value of one variable measured in the water: temperature, salinity,
oxygen, phosphate, nitrate, silicon, and potential vorticity. The first element, 1, tells us that we’re
going to account for 100% of the water at this location. The matrix G represents the water masses
at each of the end member locations:

G =



1 1 1
T1 T2 T3
S1 S2 S3

O21 O22 O23

PO41 PO42 PO43

NO31 NO32 NO33

Si1 Si2 Si3
PV1 PV2 PV3


, (3)
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and the model parameters,

m =

αβ
γ

 , (4)

indicate the fractional contributions of each of three water masses.
The first row of G impoises a requirement that α+β+γ = 1, that is that the water at our data

location is comprised entirely of a mixture of the three water masses. Formally, we should also
require that alpha, β, and γ are all positive and less than 1—that is that we cannot have negative
contributions of water masses, nor can we have super-concentrations exceeding 100%.

We can spend a bit of time pondering the normalization of each of these values. If temperature
is in millidegrees and swings over an enormous range, while salinity has a tiny range, then the big
fluctuations in temperature will have an enormous impact on the OMP solution. To solve this, we
will want to normalize by the variance of each value, so that each contributor has roughly equal
impact on the solution, or so that the weight of each contributor is consistent with the uncertainties
in the values.

Another concern is the absolute size of the values. If the data are noise free, the difference
between temperature in ◦C vs temperature in Kelvin won’t make much difference, but if there are
large uncertainties, the big values in Kelvin could do strange things to our solution.

Once we lay out the problem, and appropriately weight the matrix G, the the solution is
exactly what we’d expect:

m = (GTG)−1GTd. (5)

Seasonal cycle of temperature
Last time we looked at idealized data. Now let’s put this to work with the Ocean Station Papa

temperature data, which have a strong seasonal cycle. To fit a seasonal cycle to the data, we set up
a matrix G of the form:

G =


1 cos

(
2πt1
365.25

)
sin
(

2πt1
365.25

)
1 cos

(
2πt2
365.25

)
sin
(

2πt2
365.25

)
...

...
...

1 cos
(

2πtN
365.25

)
sin
(

2πtN
365.25

)
 . (6)

We can solve this:

file = ’data/sst50n145w_dy.cdf’
T=ncread(file,’T_25’);
time=ncread(file,’time’);
QT=ncread(file,’QT_5025’);
xx=find(QT==0 | QT>=4);
T(xx)=NaN;
plot(time,squeeze(T),’LineWidth’,2)

G=[ones(size(time)) cos(2*pi*time/365.25) sin(2*pi*time/365.25)];
G\squeeze(T)
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xx=find(˜isnan(T));
parameters=G(xx,:)\squeeze(T(xx))

% plot results
clf; plot(time,squeeze(T),’LineWidth’,2)
hold on
plot(time,G*parameters,’LineWidth’,2)
h=gca; set(h,’FontSize’,14)
xlabel(’time (days from 2006-06-08)’,’FontSize’,14)
ylabel(’temperature (ˆoC)’,’FontSize’,14)

So to recap,
Gm = d (7)

where d defines our data, G is a matrix defining the structure of the model that we fit to the data,
and m is a vector containing the model parameters. We solve this as a linear equation.

Further examples
In class we considered four additional cases. You were asked to define the matrix G required

to solve a least-squares problem for each of these cases:

1. For a time series, fit (a) mean, (b) linear trend, (c,d) M2 tide (amplitude and phase).
The wording of this seemed a little confusing, but the goal is to fit all of these at once. For
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this you can write a matrix:

G =


1 t1 cos

(
2πt1
TM2

)
sin
(

2πt1
TM2

)
1 t2 cos

(
2πt2
TM2

)
sin
(

2πt2
TM2

)
...

...
...

...

1 tN cos
(

2πtN
TM2

)
sin
(

2πtN
TM2

)

 (8)

.

2. For geographically distributed data, fit (a) mean, (b) tilted plane.
In this case, you’re asked to fit variables in x and y. Three points determine a plane, so we
don’t need too much information—just a fixed constant plus a slope in x and a slope in y:

G =


1 x1 y1
1 x2 y2
...

...
...

1 xN yN

 (9)

.

3. Same as (2) but with a quadratic structure as well.
In this case we need to add quadratic terms in x and y, and in analogy with the elliptical
covariance that we considered a few days ago, we need to allow for an xy co-dependence:

G =


1 x1 y1 x21 y21 x1y1
1 x2 y2 x22 y22 x2y2
...

...
...

...
...

...
1 xN yN x2N y2N xNyN

 (10)

.

4. For a time series, fit (a) mean, (b) linear trend, (c,d,e) Gaussian with unknown amplitude,
center point, and width.
This final case was motivated by a research question, but that doesn’t make it easy. We’re
trying to minimize the misfit between data d and a function of the form:

d̂i = a+ bxi + c exp

(
−(xi − µ)2

2σ2

)
, (11)

where the unknowns are a, b, c, µ, and σ, and two of the unknowns are embedded in the
exponential. This is not tractable as a linear least-squares fit. We have a few options.

One possibility is to solve a minimization problem for a cost function ε:

ε =
N∑
i=1

(
di − d̂i

)2
(12)
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using a non-linear fitting procedure. Matlab and Python both have functions implemented
for this. usually you need to provide a first guess, and work iteratively to sample a range
possible values for model parameters m.

A second option would be to decide that this model is too complicated. If we decided that
we knew µ and σ, we could do a linear fit for a, b, and c.

Or if we could skip fitting a and b, then we could take the log of the model equation to have:

log(d̂i) = log(c) +

(
−(xi − µ)2

2σ2

)
(13)

= log(c)− x2i
2σ2

+
µxi
σ2

− µ2

2σ2
(14)

= α′ + β′x2i + γ′xi + δ′ (15)

Of course we can’t quite solve this, since α′ and δ′ are both scalars, so they need to be
combined. And even if we’re happy with this structure, it involves minimize a different
cost function than the one we began with—not ε = (dT − d̂T )(d− d̂), but instead ε =
(logdT − log d̂T )(logd− log d̂), which is really representing the ratio of the logs. Is this a
problem? It depends on the physics of the problem that you’re trying to solve.
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