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Lecture 10: Constrained least squares

Recap
In Lecture 9, we looked at some specific examples of least-squares fitting, specifically focused

on setting up inversion problems. In this lecture, we’ll expand our repertoire by considering ad-
ditional constraints, starting by looking at the linear regression case when our dependent variable
(e.g. time or position) has uncertainties.

Linear regression with uncertain variables
In class we examined results using “ordinary least squares” compared with results based on

the “standard major axis” approach (see Bellacicco et al, 2019). In a classic least-squares problem
we define a model:

y = Gm+ n (1)

where
ŷ = Gm (2)

where n is the vector of the noise or misfit, which we aim to minimize. We minimize the cost
function:

ε =
N∑
i=1

(yi − ŷi)2 (3)

to obtain the standard least-squares solution. For a linear regression that finds a constant and a
slope, of the form ŷ = m1 +m2x, and the matrix G is:

G =


1 x1
1 x2
...

...
1 xN

 . (4)

The standard least-squares solution gives us

m = (GTG)−1GTy, (5)

which gives

m1 = 〈y〉 −m2〈x〉 (6)

m2 =
Cxy

Cxx

, (7)

where Cxy is the covariance of x and y, in the form 〈(x− 〈x〉)(y − 〈y〉)〉.
The standard major axis method assumes that both x and y have uncertainties so minimizes

the area of a triangle between the data point y and the line defining ŷ. The produces:

m1 = 〈y〉 −m2OLS
〈x〉 (8)

m2 =

√
Cyy

Cxx

= ±sy
sx
, (9)

where sy is the estimated standard deviation of y and xs is the estimated standard deviation in x.
Check the appendix of Bellacicco et al (2019) for details.
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Uncertainties in model parameters
All of the above discussion is a temporary digression. In general, when we compute a least

squares fit, we probably want to know uncertainties for our fitted parameters mi. If our data have
a known covariance, we can define a weight matrix:

W = 〈ddT 〉 = σ2I. (10)

If we weight each line of our matrix equation by the uncertainty in the data, we have

dW−1/2 = W−1/2Gm (11)

As we noted before, this yields

m = (GTW−1G)−1GTW−1d. (12)

We can also estimate the covariance of m:

〈mmT 〉 = 〈(GTW−1G)−1GTW−1d((GTW−1G)−1GTW−1dd)T 〉 (13)

= (GTW−1G)−1GTW−1〈ddT 〉W−1G(GTW−1G)−1
T

(14)

= (GTW−1G)−1GTW−1WW−1G(GTW−1G)−1
T

(15)

= (GTW−1G)−1(GTW−1G)(GTW−1G)−1
T

(16)

= (GTW−1G)−1(GTW−1G)(GTW−1G)−1
T

(17)
= (GTW−1G)−1. (18)

This is conveniently just the matrix that we were inverting, and it tells us that the inverted matrix,
weighted appropriately by the uncertainties, will provide the uncertainties in m.

Let’s test this out in the simplest possible case. Consider the case where our inversion is
simply used to find the mean of d. We define an N × 1 matrix:

G =


1
1
...
1

 . (19)

and
W = σ2I (20)

The standard least-squares solution gives us

m = (GTW−1G)−1GTW−1d (21)

=

[1 1 . . . 1
]
σ−2I


1
1
...
1



−1

[
1 1 . . . 1

]
σ−2Id (22)

=

(
N∑
i=1

1

σ2

)−1 N∑
i=1

di
σ2

(23)

= d, (24)



UCSD—SIOC 221B: (Davis, Rudnick, Gille) 3

where the overbar indicates the mean. The uncertainty in this estimate comes from the inverted
matrix:

〈mmT 〉 =

(
N∑
i=1

1

σ2

)−1
(25)

=

(
N

σ2

)
(26)

= σ2N. (27)

This wonderfully shows us that the uncertainty in our estimatem1 of the mean is the standard error
of the mean, σ/

√
N .

Constrained least squares
Now, let’s think back to the OMP problem. For that, we included a mass constraint (α + β +

γ = 1) in our least-squares fit matrix G. What if we wanted to make that an absolute requirement?
We have another strategy we an try. In addition to minimizing the original cost function

ε = (Gm− d)T (Gm− d) (28)

we can also impose K constraints of the form

Fm = h (29)

that have to satisfied exactly. For this we need to have K < M . One straightforward, but difficult
way to deal with this is to solve for K of the model parameters using (29), substitute into (28), and
solve for the remaining M −K elements of m.

A much easier way to do the problem is to use the method of Lagrange multipliers. The idea
is to introduce a K-vector of unknowns λ, and minimize the function

L = (Gm− d)T (Gm− d) + λT (Fm− h). (30)

In essence, we have added K unknowns λ, but we have K additional equations (29). This is guar-
anteed to work since we are simply adding zero to our original measure of misfit. Differentiating
and setting the result to zero,

∂L
∂m

= 2GT (Gm− d) + FTλ = 0 (31)

whhich gives the solution

m = (GTG)−1
(
GTd− 1

2
FTλ

)
(32)

Now we can plug into the constraint (29),

F(GTG)−1
(
GTd− 1

2
FTλ

)
= h (33)

and solve for the vector of Lagrange multipliers

1

2
λ =

[
F(GTG)−1FT

]−1 [
F(GTG)−1GTd− h

]
. (34)
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Substituting into (32), this gives us

m = (GTG)−1
(
GTd− FT

[
F(GTG)−1FT

]−1 [
F(GTG)−1GTd− h

])
. (35)

For the record, this problem is called least squares with linear equality constraints.

Underdetermined problem
Now, let’s consider the usual problem Gm = d, but think about what happens when we want

to find more unknowns than we have data. Least squares problems are set up forN > M . However,
it’s easy to imagine having more model paramters than data so that N < M . (Intrinsically, to take
this to an extreme, in any situation when we have noisy data and model misfit, if we want to solve
for the noise, we might imagine having as many unknowns (the misfit) as we have data.)

What do we do? Typically, one chooses to minimize some norm of the solution. A particularly
simple choice is to minimize theL2 norm of m. We then have the constrained least squares problem
to minimize:

mTm (36)

subject to the constraint Gm = d. Using the method of Lagrange multipliers, we minimize

L = mTm+ λT (Gm− d). (37)

Following the procedure for a constrained least squares problem, we can find a solution by differ-
entiating (37) with respect to m, and setting the result to zero

∂L
∂m

= 2m+GTλ = 0. (38)

Solve for m:
m = −1

2
GTλ (39)

Substitute (39) into Gm = d

− 1

2
GGTλ = d (40)

Solve for λ:
− 1

2
λ = (GGT)−1d (41)

Substitute (41) into (39) to arrive at the solution

m = GT (GGT )−1d (42)

This solution requires that the matrix GGT be invertible, which is assured if the constraints
Gm = d are consistent and unique. So the “underdetermined” problem can be thought of as
just another constrained least squares problem.

Simultaneous minimization of misfit and model size
The simultaneous minimization of misfit and model size is referred to by a number of different

names: Levenburg-Marquardt stabilization, damped least squares, or ridge regression. The
name used depends on the field in which the idea was developed, but they all boil down to the
notion that it is sometimes a good idea to minimize both misfit and model size at the same time.
Consider a formally overdetermined problem, N > M , where there are nearly as many model
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parameters as data. In this case the misfit may be small, which is superficially desirable, but
model parameters may be unrealistically large. In the formally underdetermined problem, the exact
equality in Gm = d may cause a similar problem of large model parameters, and allowing some
misfit may be desirable. A way to deal with either of these problems is to minimize a combination
of misfit and model size, which in it simplest form may be accomplished by minimizing

L = (Gm− d)T (Gm− d) + λmTm (43)

where λ is an adjustable parameter that varies the relative importance of minimizing the misfit and
the model size. We find the solution in the usual way.

L = 2GT (Gm− d) + 2λm = 0 (44)
m = (GTG+ λI)−1GT )d (45)

Here I is the identity matrix (ones along the diagonal, zeros elsewhere). Note that as λ approaches
zero, the solution is overdetermined least squares (see above), and as λ approaches infinity, the
solution is zero. In practice, one varies λ to achieve a compromise between misfit and model size.
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