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Lecture 11: Weighted and constrained least squares in the real world

Recap
In Lecture 10, we went through an inventory of least-squares methods, including talking about

determining uncertainties of fitted model parameters m, considering constrained least squares
problems (adding a constraing of the form Fm = H, underdetermined problems (when N < M ,
and the solution takes the form m = GT (GGT )−1d), and simultaneous minimization of misfit
and model size (with a solution of the form m = (GTG+ λI)−1GTd).

Now, we’ll consider a final case, in which we formally set the covariance of both d and m,
and then we’ll examine a few examples.

To get started in class, we looked at a weighted and constrained tidal solution from a paper
by Kachelein et al (2022), in which imposing prior knowledge on the spectral structure of bottom
pressure data modestly influences the inferred tidal amplitudes and their uncertainties. All of this
required that we understand what to do with the covariance matrices for d and m.

Weighted systems: Accounting for model and data covariances
Adding some weighting to the measures of misfit and model size is often desirable. The

essential idea is to weight some of the data, or some of the model parameters, more heavily than
others. That is, we may have prior knowledge about the accuracy of the data, or the value of the
model parameters.

Suppose some of the data are known more accurately than others. Then an appropriate mea-
sure of misfit might be

ε = (Gm− d)TWe(Gm− d) (1)

where We is a weight matrix with diagonal elements σ−2i , the inverse variance of each datum.
In general, errors in the data may be correlated, and We might not be diagonal. A reasonable

choice for We might then be the inverse of the data–data covariance matrix. Writing the data as a
mean plus a fluctuation

d = 〈d〉+ d′, (2)

the data–data covariance matrix is 〈d′d′2〉−1, and We would be

We = 〈d′d′T 〉. (3)

Now let’s turn our attention to the model parameters. Suppose that minimizing the size of the
model using mTm is not desirable. A general measure of the model size may be written as

γ = (m−m0)
TWm(m−m0), (4)

where m0 expresses prior knowledge of the solution, and Wm allows weighting. The matrix Wm

represents the covariance of the model solution and could be constructed to constrain the size of
m or alternatively to minimize some other quantity, such as the curvature of m, for example.

The general problem of simultaneously minimizing misfit (1) and model size (4) involves
minimizing the cost function

L = ε+ λγ (5)
= (Gm− d)TWe(Gm− d) + λ(m−m0)

TWm(m−m0). (6)

We find the solution for this in the usual way, by minimizing ∂L/∂m. This is most easily done by
defining:

m′ = m−m0 (7)
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so that
L = (Gm′ +Gm′ − d)TWe(Gm′ +Gm′ − d) + λm′TWmm

′. (8)

and

∂L
∂m′

= 2GTWe(Gm′ +Gm0 − d) + 2λWmm (9)

= 2(GTWeG+ λWm)m
′ − 2GTWe(d−Gm0) (10)

= 0. (11)

This implies that

m′ = (2(GTWeG+ λWm))
−1GTWe(d−Gm0) (12)

m = m0 + (GTWeG+ λWm)
−1GTWe(d−Gm0). (13)

You can think of m0 as a prior guess that is perturbed or updated through the weighted least-squares
fitting process. This weighted solution can provide an iterative update to a previous solution, and
you can think of it as a (slightly simplified) representation of what a data assimilation procedure
does when it takes in data to update a state estimate.

Since We and Wm are inverses of covariance matrices, sometimes it’s easier to work with
the covariance matrices. In some publications, W−1

e = R, which is the data-data covariance,
representing the noise in the data. And λW−1

m = P is the model-model covariance. The ratio
between P and R provides a measure of signal to noise. In this terminology,

m = m0 + (2(GTR−1G+P−1))−1GTR−1(d−Gm0). (14)

In these solutions, as λ → 0, the covariance of the solution is allowed to be large, and no
model solutions are imposed, so that

m = (GTWeG)−1GTWe(d), (15)

which is the weighted least squares solutions.
Alternatively, as λ→∞, we find:

m = m0. (16)

In summary, it is possible to minimize any combination of criteria, and satisfy any number
of constraints. The real challenge is conceptual rather than technical. The real value of these
calculations is based on the science expressed in the minimization criteria and the constraints. In
class, we can talk all we want about techniques, but coming up with a sensible model will depend
on the scientific problem at hand.

Examples
In class, we considered several specific examples.

1. For a constrained problem, the model parameters m (or x) need to be as close as possible
to a prior guess that is not zero. What is our cost function?
If we want a cost function that minimizes the model parameters, then we need to include a
term that forces mTm to be small:

L = ε+ λγ (17)
= (Gm− d)TWe(Gm− d) + λmTWmm. (18)
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2. In an annual record, data (y) collected in summer are more accurate than data collected in
winter. How do we represent that?
To account for varying accuracy in our data, we’ll want to adjust our weight matrix We to
have differing values of σ−2i on the diagonals. Smaller σi in summer imply larger weights.
Note that overweighting summer values could mess up our estimates of the annual mean and
annual cycle, so we would need to scrutinize our results fairly carefully.

3. In our final solution, we fit an annual cycle and a diurnal cycle, but we expect them to have
different amplitudes, so different covariances. How do we represent that?
If we are fitting for model parameters m to represent an annual cycle (i.e. coefficients of
cos(2πt/(365.25 days) and sin(2πt/(365.25 days)) and a diurnal cycle (i.e. cos(2πt/(1 day)
and sin(2πt/(1 day)), then we’ll want to include different a priori covariances for these
parameters in the weight matrix Wm.
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